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1 Introduction

The purpose of these notes is to provide a comprehensive introduction to modern macroeco-
nomics for Master’s students and researchers who may not be familiar with the field. Modern
macroeconomics is characterized by the use of micro-founded behaviors of economic agents,
such as households and firms, within dynamic environments. This analytical framework rep-
resents a significant departure from traditional models like IS-LM or AS-AD, which are typ-
ically studied at the undergraduate level. Given the substantial gap between undergraduate
macroeconomics and more advanced, contemporary approaches, I deemed it necessary to pre-
pare these notes. Additionally, this work is intended to facilitate my teaching responsibilities
in the classroom.

These notes are organized around four main themes, which forms the building blocks of this
document:

1. A quick guide for methods in deterministic dynamics (Part I: Methods in Dynamic
Economics), covering tools like ordinary differentials equations, difference equations and
dynamic optimization

2. An overview of the benchmark model and their applications in growth theory (Part II:
Benchmark models) presenting key models in dynamic macroeconomics. The Solow
model introduces fundamental concepts in macrodynamics, while the Ramsey-Cass-
Koopmans model (often referred to as the Ramsey model) and the Overlapping Gener-
ations model (OLG) are among the most widely utilized models.

3. some notes on Endogenous Growth Theory (Part III: Endogenous Growth Theory) sum-
marizing major contributions in this area, ranging from the AK model to models of
technological change.

4. Topics in Aggregate Fluctuations (to be written).

Readers should bear in mind that a model is primarily a tool for understanding real-world
problems. Just as a tool can vary in its sharpness, a model can be more or less suited to
studying a particular issue. Theoretical developments aim to refine these tools, while empirical
methods assess their effectiveness in explaining different types of problems. In these notes,
my goal is to provide students with a solid foundation for theoretical work in economics.
The applications are potentially infinite (a major conclusion of Endogenous Growth Theory).
Although additional applications may be incorporated over time, I believe this volume is
already sufficiently comprehensive and beneficial to students in its current form. This is an
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initial version, and it is likely to evolve, incorporating new contents (topics, code blocks …) or
revised structures within chapters.

Many researchers and educators have contributed to the extensive literature on the topics
covered here. While I have endeavored to write as accurately and originally as possible, I
acknowledge that some formulations or sections may overlap with existing works. I apologize
in advance for any such overlaps and will continue to refine this document until it reaches the
desired standard. All errors are, of course, my own.
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Methods
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2 Ordinary Differentials Equations

In this chapter, we review solution methods of linear differential equations and systems of
linear differential equations, also called Ordinary Differential Equations (ODE). These are
essential when studying continuous time problem in macroeconomic dynamics. The chapter is
organized as follows: we will first review some basic definitions and then proceed to examine
solutions methods of first-order and second-order differential equations. We finally discuss the
generalizations of the solution methods to a system of n first-order differential equations.

2.1 Definitions

A differential equation is a mathematical equation derivend from an unknown function of one
or more variables, which connects the function itself and its derivatives of various degrees.

The solution of a simple equation (or a system of equations) is a constant or a set of constants
that satisfy these equations. In contrast, the solution of a differential equation (or a system
of differential equations) is a function, or a set of functions that, along with their derivatives,
satisfy the differential equation or the system of differential equations. The equations we shal
consider are all functions of time 𝑡, which is assumed to be a continuous variable defined on
the set of real numbers ℝ.

Consider for a example the solution to the differential equation:1

̇𝑦(𝑡) = 𝑑𝑦
𝑑𝑡 = 𝑎

is a function 𝑦(𝑡), the first derivative of which with respect to time is equal to 𝑎. The general
solution to this differential equation is the function

𝑦(𝑡) = 𝑎𝑡 + 𝑐

where 𝑐 is an arbitrary constant. A particular solution can then be found using a boundary
condition, such as an initial condition known at time 𝑡 = 0, 𝑦0 taken as given.

To find the general solution, rewrite the initial equation as :

1We use the conventional notation where 𝑡 enters as an argument for each variable that depends to time and
the “dot” over a variable means the time derivative of the considered variable.
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̇𝑦(𝑡)
𝑦(𝑡) = 𝑎 ⇒ 1

𝑦(𝑡)
𝑑𝑦(𝑡)

𝑑𝑡 = 𝑎 ⇒𝑑𝑦
𝑦 = 𝑎𝑑𝑡

Which can be integrated:

∫ 𝑑𝑦
𝑦 = ∫ 𝑎𝑑𝑡 + 𝑐 ⇒ 𝑙𝑛(𝑦(𝑡)) = 𝑎𝑡 ⇒ 𝑦(𝑡) = 𝑐 exp𝑎𝑡

with 𝑐 an arbitrary constant.To determine this constant and find the particular solution, use
the information 𝑦(0) = 𝑦0 given:

𝑦(0) = 𝑦0 = 𝑐 exp𝑎⋅0 ⇒ 𝑐 = 𝑦0

The final solution has then the form:

𝑦(𝑡) = 𝑦0𝑒𝑥𝑝𝑎𝑡

Note that we can differentiate with respect to 𝑡 the RHS of the solution : ̇𝑦(𝑡) = 𝑎𝑦0𝑒𝑥𝑝𝑎𝑡 ≡
𝑎𝑦(𝑡). We have indeed found the solution.

We could also look at a differential equation of the form ̈𝑦(𝑡) = 𝑑2𝑦(𝑡)
𝑑𝑡2 = 𝑎 which is a second-

order differential equation and so on …

A solution of a differential equation is a function 𝑦(𝑡), which along with its derivatives, satisfies
the differential equation. A particular solution requires the determination of the arbitrary
constant or a constants of integration.

Differential equations are classified by their porder, which is none other than the order of the
highest derivative that appears in the equation.

A differential equation is linear if the unknown function 𝑦(𝑡) and its derivatives are linear.
Otherwise, it is nonlinear.

A differential equation can be solved by a method known as separation of variables if it can
be written as a term that contains a function of only 𝑦, equated to a term that contains a
function only of 𝑡. For example, 𝑔(𝑦(𝑡)) ̇𝑦(𝑡) = 𝑓(𝑡) can be written as:

𝑔(𝑦)𝑑𝑦 = 𝑓(𝑡)𝑑𝑡
The solution can be found using the integration techniques used above.
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2.2 First-Order Linear Differential Equations

We may found two types of linear differential equations: those with constant coefficients or
those with variable coefficients.

2.2.1 Constant Coefficients

This category of linear ODE takes the form:

̇𝑦(𝑡) + 𝑎𝑦(𝑡) = 𝑏 (2.1)

with 𝑎 and 𝑏 some constants. To find the function that satisfies (2.1), note that

𝑑 (𝑒𝑎𝑡𝑦(𝑡))
𝑑𝑡 = 𝑎𝑒𝑎𝑡𝑦(𝑡) + 𝑒𝑎𝑡 ̇𝑦(𝑡) = 𝑒𝑎𝑡[ ̇𝑦(𝑡) + 𝑎𝑦(𝑡)] (2.2)

If the differential equation (2.1) is multiplied by 𝑒𝑎𝑡, its left-hand side is an exact differential
equation) (i.e., the total differential of a function with respect to 𝑡 ). The function 𝑒𝑎𝑡 is called
the integrating factor. Multiplying both sides of (2.2) by 𝑑𝑡, we get

𝑑 (𝑒𝑎𝑡𝑦(𝑡)) = 𝑏𝑒𝑎𝑡𝑑𝑡

whose integral is

𝑒𝑎𝑡𝑦(𝑡) = 𝑒𝑎𝑡 𝑏
𝑎 + 𝑐

,

where 𝑐 is the constant of integration. Multiplying both sides of this expression by 𝑒−𝑎𝑡, we
get

𝑦(𝑡) = 𝑏
𝑎 + 𝑐𝑒−𝑎𝑡 (2.3)

as the family of functions that satisfy the differential equation (2.1). This family is called the
general solution of (2.1).

To determine the constant of integration 𝑐, we need to know the value of the function at some
point in time. For example, if we know that at time 𝑡 = 0, 𝑦(0) = 𝑦0, then

𝑦0 = 𝑏
𝑎 + 𝑐
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which implies

𝑐 = 𝑦0 − 𝑏
𝑎

The general solution of the differential equation (2.1) that satisfies 𝑦(0) = 𝑦0 is then given
by

𝑦(𝑡) = 𝑦0𝑒−𝑎𝑡 + (1 − 𝑒−𝑎𝑡) 𝑏
𝑎 = 𝑏

𝑎 + (𝑦0 − 𝑏
𝑎) 𝑒−𝑎𝑡

In conclusion, to solve a linear first-order differential equation with constant coefficients, mul-
tiply it by the integrating factor and integrate it. To calculate the constant of integration, use
the value of the function at some point. The point that is used is called an initial condition
or a terminal condition, or more generally, a boundary condition.

2.2.2 Variable Right-Hand Side

If the right-hand side of (2.1) is not constant but a known function of time, the solution method
is similar. We multiply by the integrating factor and take the integral.

For example, for the differential equation

̇𝑦(𝑡) + 𝑎𝑦(𝑡) = 𝑏𝑒𝜆𝑡 (2.4)

multiplying by the integrating factor and separating the variables results in

𝑑 (𝑒𝑎𝑡𝑦) = 𝑏𝑒(𝑎+𝜆)𝑡𝑑𝑡 (2.5)

Taking the integral of both sides of (2.5) yields

𝑒𝑎𝑡𝑦(𝑡) = 𝑏
𝑎 + 𝜆𝑒(𝑎+𝜆)𝑡 + 𝑐

Dividing both sides by the integrating factor, we get the solution

𝑦(𝑡) = 𝑏
𝑎 + 𝜆𝑒𝜆𝑡 + 𝑐𝑒−𝑎𝑡 (2.6)

Equation (2.6) is the family of functions satisfying (2.4). The unknown constant 𝑐 can again
be determined by a boundary condition.

12



2.2.3 Variable Coefficients

The general form of a first-order linear differential equation is

̇𝑦(𝑡) + 𝑎(𝑡)𝑦(𝑡) = 𝑏(𝑡) (2.7)

where 𝑎(𝑡) and 𝑏(𝑡) are known functions, and we seek the function 𝑦(𝑡). The function 𝑏(𝑡) is
often called a forcing term and is considered exogenous. The integrating factor in this case is
𝑒∫ 𝑎(𝑡)𝑑𝑡, because

𝑑 (𝑦(𝑡)𝑒∫ 𝑎(𝑡)𝑑𝑡)
𝑑𝑡 = 𝑒∫ 𝑎(𝑡)𝑑𝑡[ ̇𝑦(𝑡) + 𝑎(𝑡)𝑦(𝑡)]

Thus, multiplying (2.7) by this integrating factor and taking the integral, we get

𝑦(𝑡)𝑒∫ 𝑎(𝑡)𝑑𝑡 = ∫ 𝑏(𝑡)𝑒∫ 𝑎(𝑡)𝑑𝑡𝑑𝑡 + 𝑐

Dividing (C.21) by the integrating factor, we finally get

𝑦(𝑡) = 𝑒− ∫ 𝑎(𝑡)𝑑𝑡 ∫ 𝑏(𝑡)𝑒∫ 𝑎(𝑡)𝑑𝑡𝑑𝑡 + 𝑒− ∫ 𝑎(𝑡)𝑑𝑡𝑐 (2.8)

where 𝑐 is the constant of integration. (2.8) is the general solution of (2.7). A particular
solution requires a boundary condition that will determine the unknown constant 𝑐.

Note that it is not advisable to apply the solution (2.8) to any equation. It is simpler in many
cases to multiply by the integrating factor and take the integral.

2.2.4 Homogeneous and Nonhomogeneous Differential Equations

If 𝑏 = 0 in (2.1), the differential equation to be solved is called homogeneous. Otherwise, it is
called nonhomogeneous.

The general solution of a differential equation consists of the sum of the general solution to the
relevant homogeneous differential equation (i.e., setting 𝑏 = 0 and solving, and then adding to
this solution a particular solution of the general equation (2.1).

For example, the homogeneous equation derived from (2.1) is

̇𝑦(𝑡) + 𝑎𝑦(𝑡) = 0 (2.9)
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The general solution of (2.9) is

𝑦(𝑡) = 𝑐𝑒−𝑎𝑡 (2.10)

A particular solution (setting, for example, ̇𝑦(𝑡) = 0) ) is

̄𝑦 = 𝑏
𝑎 (2.11)

Consequently, the general solution of the nonhomogeneous differential equation (2.1) is the
sum of (2.10) and (2.11), that is, the general solution of the relevant homogeneous differential
equation (sometimes called the complementary function) plus the particular solution for a
constant 𝑦 (otherwise known as the particular integral). The general solution is thus given
by

𝑦(𝑡) = 𝑏
𝑎 + (𝑦0 − 𝑏

𝑎) 𝑒−𝑎𝑡

This methodology is not generally necessary for solving first-order linear differential equations,
but it becomes very useful for differential equations of order higher than one or for systems of
first-order linear differential equations.

2.2.5 Convergence and Stability of First-Order Differential Equations

In many economic applications, we are interested in the behavior of the solution of a differential
equation as the independent variable, usually time, tends to infinity. The value to which the
solution converges is referred to as a stationary state, or steady state, or equilibrium state.

For example, from (2.3), which is the general solution of (2.1), for 𝑎 > 0 , we get

lim
𝑡→∞

𝑦(𝑡) = lim
𝑡→∞

( 𝑏
𝑎 + 𝑐𝑒−𝑎𝑡) = 𝑏

𝑎.

The particular integral of the differential equation (2.1) can therefore be interpreted economi-
cally as the equilibrium state (or the steady state), which is the state toward which the variable
𝑦 converges as time goes to infinity. This equilibrium is called a stable node. It is a stable
equilibrium if 𝑦 is a predetermined variable and only changes gradually, as postulated by the
law of motion (C.26).

Assume now that 𝑎 < 0. In this case, if the boundary condition 𝑦0 is different from the
steady value ̄𝑦, then 𝑦(𝑡) (as determined by (C.26)) moves to plus or minus infinity, farther
and farther away from the steady state. The only case in which this does not happen is
when the boundary condition 𝑦0 is equal to the steady state value ̄𝑦 = 𝑏/𝑎. Then 𝑦 remains
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constant at ̄𝑦. However, this is an unstable equilibrium, called a saddle point. There is only
one adjustment path that leads to it and this is for 𝑦 to jump immediately to the steady state.
If 𝑦 is a non-predetermined variable (for example, a financial variable or any variable that can
change abruptly and not gradually), then it can jump immediately to its steady state value.

2.3 Second-Order Linear Differential Equations

A second-order linear differential equation has the form

̈𝑦(𝑡) + 𝑎(𝑡) ̇𝑦(𝑡) + 𝑏(𝑡)𝑦(𝑡) = ℎ(𝑡) (2.12)

where 𝑎(𝑡), 𝑏(𝑡), and ℎ(𝑡) are known functions, and what is sought is the function 𝑦(𝑡). The
forcing term in this case is the function ℎ(𝑡). Equation (2.12) is referred to as the complete
equation and is nonhomogenous. Related to (2.12) is a homogeneous differential equation in
which ℎ(𝑡) = 0 :

̈𝑦(𝑡) + 𝑎(𝑡) ̇𝑦(𝑡) + 𝑏(𝑡)𝑦(𝑡) = 0 (2.13)

which is called the reduced equation. The complete equation is nonhomogenous, whereas the
reduced equation is homogeneous. The reduced equation is of interest because of the following
two theorems.

Theorem 1

The general solution of the complete equation (2.12) is the sum of any particular solution
of the complete equation and the general solution of the reduced equation (2.13).

Theorem 2

Any solution 𝑦(𝑡) of the reduced equation (2.13) on 𝑡0 ≤ 𝑡 ≤ 𝑡1 can be expressed as a
linear combination, 𝑦(𝑡) = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡), 𝑡0 ≤ 𝑡 ≤ 𝑡1, of any two particular solutions
𝑦1, 𝑦2 that are linearly independent.

2.3.1 Homogeneous Equations with Constant Coefficients

We first examine the differential equation (2.12), with constant coefficients, that is, 𝑎(𝑡) =
𝑎, 𝑏(𝑡) = 𝑏. Assume that ℎ(𝑡) = 0. The differential equation then takes the form

̈𝑦(𝑡) + 𝑎 ̇𝑦(𝑡) + 𝑏𝑦(𝑡) = 0 (2.14)

15



Inspired by the general solution of the first-order linear differential equation with constant
coefficients, let us try the general solution

𝑦(𝑡) = 𝑐𝑒𝑟𝑡

with unknown constants 𝑐 and 𝑟. This solution method is called the method of undetermined
coefficients. This solution implies that

̇𝑦(𝑡) = 𝑟𝑐𝑒𝑟𝑡, ̈𝑦(𝑡) = 𝑟2𝑐𝑒𝑟𝑡

Substituting these expressions in (2.14), we get

𝑐𝑒𝑟𝑡 (𝑟2 + 𝑎𝑟 + 𝑏) = 0 (2.15)

For a nonzero 𝑐, our trial solution satisfies (2.15) only if 𝑟 is a root of the quadratic equation

𝑟2 + 𝑎𝑟 + 𝑏 = 0 (2.16)

Equation (2.16) is called the 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 of (2.14). It has two roots:

𝑟1, 𝑟2 = −𝑎±
√

𝑎2−4𝑏
2 .

We distinguish three cases, depending on the value of the discriminant 𝑎2− 4𝑏 of the charac-
teristic equation (2.16).

• Case 1 $ a^{2}>4 b $ The discriminant is positive, and the roots are real and distinct.
The general solution of (2.14) takes the form

𝑦(𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡

where 𝑟1, 𝑟2 are the roots of the characteristic equation (2.16), and 𝑐1, 𝑐2 are arbitrary con-
stants.

• Case 2 $ a^{2}<4 b$ The discriminant is negative, and the roots are a pair of complex
conjugates:
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𝑟1, 𝑟2 = −𝑎
2 ± 𝑖

√
4𝑏 − 𝑎2

2 = 𝛼 ± 𝑖𝛽

where 𝛼 = −𝑎
2 , and 𝛽 =

√
4𝑏−𝑎2

2 . The general solution in this case is

𝑦(𝑡) = 𝑒𝛼𝑡 (𝑘1 cos 𝛽𝑡 + 𝑘2 sin 𝛽𝑡)

where 𝑘1, 𝑘2 are arbitrary constants.

• Case 3 𝑎2 = 4𝑏 The discriminant is equal to zero, and the two roots are the same and
equal to −𝑎/2. One can show that the general solution of (2.14) in this case takes the
form

𝑦(𝑡) = 𝑐1𝑒𝑟𝑡 + 𝑐2𝑡𝑒𝑟𝑡 = 𝑒𝑟𝑡 (𝑐1 + 𝑐2𝑡)

where 𝑟 = −𝑎/2 is the double root of the characteristic equation (2.16), and 𝑐1, 𝑐2 are arbitrary
constants.

2.3.2 Nonhomogeneous Equations with Constant Coefficients

We have already derived the solution of any homogeneous second-order linear differential
equation with constant coefficients. To find the solution of a nonhomogeneous equation, we
need a particular solution of the complete equation. If the complete equation is of the form

̈𝑦(𝑡) + 𝑎 ̇𝑦(𝑡) + 𝑏𝑦(𝑡) = ℎ

then a particular solution is the constant function

̄𝑦 = ℎ
𝑏

The full solution is thus the sum of the general solution to the homogeneous equation plus the
particular solution to the complete equation.

For differential equations with variable coefficients, more advanced methods, such as the
method of variation of parameters, can be utilized for their solution.
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2.4 A Pair of First-Order Linear Differential Equations

We next examine a case with extensive applications in macroeconomics: a pair of first-order
linear differential equations of the form

̇𝑥(𝑡) = 𝑎1𝑥(𝑡) + 𝑏1𝑦(𝑡) + 𝑝(𝑡)
̇𝑦(𝑡) = 𝑎2𝑥(𝑡) + 𝑏2𝑦(𝑡) + 𝑔(𝑡) (2.17)

where 𝑎1, 𝑎2, 𝑏1, 𝑏2 are given constants, and 𝑝(𝑡), 𝑔(𝑡) are given functions. The solution of the
system of differential equations (2.17) will be two functions 𝑥(𝑡) and 𝑦(𝑡) that satisfy both
differential equations.

The homogeneous system that corresponds to (2.17) is given by

̇𝑥(𝑡) = 𝑎1𝑥(𝑡) + 𝑏1𝑦(𝑡)
̇𝑦(𝑡) = 𝑎2𝑥(𝑡) + 𝑏2𝑦(𝑡) (2.18)

2.4.1 The Method of Substitution

One solution method is the method of substitution. Substituting 𝑦(𝑡) and its derivatives in
the equation determining 𝑥(𝑡), we end up with a second-order linear differential equation that
contains only 𝑥(𝑡) and its derivatives:

̈𝑥(𝑡) − (𝑎1 + 𝑏2) ̇𝑥(𝑡) + (𝑎1𝑏2 − 𝑏1𝑎2) 𝑥(𝑡) = 0 (2.19)

Equation (2.19) is a linear homogeneous second-order differential equation. It can be solved
using the method of undetermined coefficients. Its characteristic equation is given by

𝑟2 − (𝑎1 + 𝑏2) 𝑟 + (𝑎1𝑏2 − 𝑎2𝑏1) = 0 (2.20)

If the roots of (2.20) are real and distinct, the solution of (2.19) is given by

𝑥(𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡 (2.21)

Solving the first equation of (2.18) with respect to 𝑦(𝑡), we get

𝑦(𝑡) = 1
𝑏1

( ̇𝑥(𝑡) − 𝑎1𝑥(𝑡))

Substituting the solution (2.21) for 𝑥(𝑡) and its first derivative, we get
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𝑦(𝑡) = 1
𝑏1

((𝑟1 − 𝑎1) 𝑐1𝑒𝑟1𝑡 + (𝑟2 − 𝑎1) 𝑐2𝑒𝑟2𝑡) (2.22)

Consequently, the solution of the system (2.18) consists of equations (2.21) and (2.22), if the
roots of (2.20) are real and distinct. We can solve the system in an analogous way if we have
complex or repeated roots.

However, there is a second and more direct solution method of the homogeneous system (2.18).
This method also generalizes to higher-order systems of differential equations.

2.4.2 The Method of Eigenvalues

Our experience with first-order differential equation suggests that we use the pair of equa-
tions

𝑥(𝑡) = 𝐴𝑒𝑟𝑡, 𝑦(𝑡) = 𝐵𝑒𝑟𝑡

as particular solutions for (2.18). Here 𝐴, 𝐵, and 𝑟 are undetermined coefficients. Substituting
these solutions in (2.18), we get

𝑟𝐴𝑒𝑟𝑡 = 𝑎1𝐴𝑒𝑟𝑡 + 𝑏1𝐵𝑒𝑟𝑡

𝑟𝐵𝑒𝑟𝑡 = 𝑎2𝐴𝑒𝑟𝑡 + 𝑏2𝐵𝑒𝑟𝑡 (2.23)

Dividing both equations by 𝑒𝑟𝑡, we can rewrite the system (2.23) in matrix form:

( 𝑎1 − 𝑟 𝑏1
𝑎2 𝑏2 − 𝑟 ) (𝐴

𝐵) = (0
0) (2.24)

For (2.24) to hold, the determinant of the matrix of coefficients must be zero:

∣ 𝑎1 − 𝑟 𝑏1
𝑎2 𝑏2 − 𝑟 ∣ = 0

Calculating the determinant, we get a quadratic equation in 𝑟 :

𝑟2 − (𝑎1 + 𝑏2) 𝑟 + (𝑎1𝑏2 − 𝑎2𝑏1) = 0 (2.25)

Equation (2.25) is the characteristic equation of the system (2.18). Equation (2.25) is identical
to (2.20), the equation we ended up with when using the method of substitution. The solutions
of the characteristic equation (2.25) are called the eigenvalues of the matrix of coefficients:
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( 𝑎1 𝑏1
𝑎2 𝑏2

)

The two roots are given by

𝑟1, 𝑟2 =
(𝑎1 + 𝑏2) ± √(𝑎1 + 𝑏2)2 − 4 (𝑎1𝑏2 − 𝑎2𝑏1)

2 (2.26)

For future use, note that

𝑟1 + 𝑟2 = 𝑎1 + 𝑏2
𝑟1𝑟2 = 𝑎1𝑏2 − 𝑎2𝑏1

If the roots are real, and 𝑟1 ≠ 𝑟2, then the general solution of the homogeneous system (2.18)
is given by

𝑥(𝑡) = 𝐴1𝑒𝑟1𝑡 + 𝐴2𝑒𝑟2𝑡,
𝑦(𝑡) = 𝐵1𝑒𝑟1𝑡 + 𝐵2𝑒𝑟2𝑡,

where 𝐴1, 𝐴2 are determined by boundary conditions; the roots are determined by (2.26); and
𝐵1, 𝐵2 are determined by (2.23) as

𝐵1 = 𝑟1 − 𝑎1
𝑏1

𝐴1

𝐵2 = 𝑟2 − 𝑎1
𝑏1

𝐴2

The solution is identical to (2.21) and (2.22). In the case of complex or repeated roots, the
solution is analogous.

Having found the general solution to the homogeneous system (2.18), it remains to find a
particular solution of (2.17), using, for example, the method of variation of parameters.

For the special case where 𝑝 and 𝑔 are constants, a special solution with constant 𝑥 and 𝑦 can
be found by solving the system of equations

𝑎1 ̄𝑥 + 𝑏1 ̄𝑦 + 𝑝 = 0
𝑎2 ̄𝑥 + 𝑏2 ̄𝑦 + 𝑔 = 0 (2.27)

Expressing (2.27) in matrix form and solving for ̄𝑥 and ̄𝑦, we get
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( 𝑎1 𝑏1
𝑎2 𝑏2

) ( ̄𝑥
̄𝑦) = −(𝑝

𝑔)

The solution is then given by

( ̄𝑥
̄𝑦) = − ( 𝑎1 𝑏1

𝑎2 𝑏2
)

−1
(𝑝

𝑔)

where ̄𝑥 and ̄𝑦 can be regarded as steady state, or equilibrium points. Whether the system
converges globally to equilibrium depends on whether both roots are real and smaller than
zero. In this case, the equilibrium is a sink. If both variables are predetermined, this is a stable
equilibrium.

If we have a positive and a negative root, the equilibrium is called a saddle point. There is
only one unique path that leads to this equilibrium, and this path is called the saddle path.
The economy will converge to equilibrium if one variable is predetermined and the other not
predetermined. The non-predetermined variable will jump to the unique adjustment path lead-
ing to equilibrium. Technically, the negative root corresponds to the predetermined variable
(for which we solve backward), and the positive root corresponds to the non-predetermined
variable (for which we solve forward).

Thus, a system with one predetermined and one non-predetermined variable has an equilibrium
(a saddle point) if the matrix of coefficients has one positive and one negative eigenvalue.

2.4.3 A System of n First-Order Linear Differential Equations

Finally, we turn to a more general case with extensive applications in macroeconomics: a
system of 𝑛 first-order linear differential equations of the form

̇𝑥1(𝑡) = 𝑎11𝑥1(𝑡) + 𝑎12𝑥2(𝑡) + ⋯ + 𝑎1𝑛𝑥𝑛(𝑡) + 𝑔1(𝑡)
̇𝑥2(𝑡) = 𝑎21𝑥1(𝑡) + 𝑎22𝑥2(𝑡) + ⋯ + 𝑎2𝑛𝑥𝑛(𝑡) + 𝑔2(𝑡)

⋮
̇𝑥𝑛(𝑡) = 𝑎𝑛1𝑥1(𝑡) + 𝑎𝑛2𝑥2(𝑡) + ⋯ + 𝑎𝑛𝑛𝑥𝑛(𝑡) + 𝑔𝑛(𝑡)

(2.28)

where 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑎𝑖𝑗 for 𝑖, 𝑗 = 1, 2, … , 𝑛 are given constant parameters, and 𝑔1, 𝑔2, … , 𝑔𝑛 are
exogenous forcing functions of time.

In matrix form, this system can be written as

⎛⎜
⎝

̇𝑥1(𝑡)
⋮

̇𝑥𝑛(𝑡)
⎞⎟
⎠

= ⎛⎜
⎝

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞⎟
⎠

⎛⎜
⎝

𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)
⎞⎟
⎠

+ ⎛⎜
⎝

𝑔1(𝑡)
⋮

𝑔𝑛(𝑡)
⎞⎟
⎠
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or

ẋ(𝑡) = Ax(𝑡) + g(𝑡) (2.29)

where bold letters denote vectors and matrices; A is the square 𝑛×𝑛 coefficient matrix, which
is assumed to be nonsingular.

2.4.4 Eigenvalues and Eigenvectors

Before we proceed to discuss the solution of the system of differential equations (2.28), it
is worth delving a little more into linear algebra, and in particular, into the concepts of
eigenvalues and eigenvectors.

Let A be a square matrix, like the one multiplying the x vector in the righthand side of (2.29).
An eigenvalue of A is a number 𝜌, which when subtracted from each of the diagonal elements
of A converts A into a singular (i.e., noninvertible) matrix. Subtracting a scalar 𝜌 from each
of the diagonal elements of A is equivalent to subtracting from A𝜌 times the identity matrix
I. Therefore, 𝜌 is an eigenvalue of A if and only if A − 𝜌I is singular.

Because a matrix is singular if its determinant is equal to zero, 𝜌 is an eigenvalue of A if and
only if

det |A − 𝜌I| = 0.

For an 𝑛 × 𝑛 matrix A, the determinant of A − 𝜌I is an 𝑛 th-order polynomial in 𝜌, called the
characteristic polynomial of A. An 𝑛 th-order polynomial has at most 𝑛 roots. Therefore, an
𝑛 × 𝑛 square matrix has at most 𝑛 eigenvalues.

It follows from the above that the diagonal entries of a diagonal matrix D are eigenvalues of
D, and that a square matrix A is singular if and only if 0 is an eigenvalue of A.

Recall from elementary linear algebra that a square matrix B is nonsingular if and only if the
only solution of Bx = 0 is x = 0. Conversely, B is singular if and only if the system Bx = 0
has a nonzero solution.

The fact that A − 𝜌I is singular when 𝜌 is an eigenvalue of A means that the system of
equations (A − 𝜌I)v = 0 has a solution other than v = 0.

When 𝜌 is an eigenvalue of A, a nonzero vector v such that (A − 𝜌I)v = 0, is called a (right)
eigenvector of A, corresponding to the eigenvalue 𝜌.

Thus, eigenvectors are nonzero vectors v that satisfy

(A − 𝜌I)v = 0, Av − 𝜌Iv = 0, Av = 𝜌v.

These three statements are equivalent.
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2.5 Solving the 𝑛 th-Order System of Linear Differential Equations

Let us now turn to the solution of the 𝑛 th-order system of linear differential equations repre-
sented by (2.28). The general solution of the nonhomogeneous system of differential equations
(2.28) will be the sum of the general solution of the relevant homogeneous system of differential
equations plus the particular solution for constant 𝑥 s.

We shall concentrate on the solution of the homogeneous system

⎛⎜
⎝

̇𝑥1(𝑡)
⋮

̇𝑥𝑛(𝑡)
⎞⎟
⎠

= ⎛⎜
⎝

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞⎟
⎠

⎛⎜
⎝

𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)
⎞⎟
⎠

(2.30)

or simply, ẋ = Ax, where x is the column vector on the right-hand side of (2.30).

Assume first that A is a diagonal matrix, for which 𝑎𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. Then (2.30) becomes a
system of n independent self-contained equations of the form

̇𝑥𝑖(𝑡) = 𝑎𝑖𝑖𝑥𝑖(𝑡)

We thus have a system of independent first-order linear differential equations that can be
solved one by one:

𝑥𝑖(𝑡) = 𝑐𝑖𝑒𝑎𝑖𝑗𝑡

If the off-diagonal elements 𝑎𝑖𝑗 differ from zero, so that the equations are linked to each
other, then we can use the eigenvalues and eigenvectors of the coefficient matrix of (2.30) to
transform it to a system of 𝑛 (or fewer) independent equations. We can use the eigenvalues
and eigenvectors of A to transform the system to a system that has a diagonal coefficient
matrix.

Let us assume that A has 𝑛 distinct real eigenvalues 𝜌1, 𝜌2, … , 𝜌𝑛, with corresponding eigen-
vectors v1, v2, … , v𝑛. It then follows from the definition of eigenvalues and eigenvectors that

Av𝑖 = 𝜌𝑖v𝑖, 𝑖 = 1, 2, … , 𝑛 (2.31)

Let P be the 𝑛 × 𝑛 matrix whose columns are these 𝑛 eigenvectors. Thus P is defined as

P = [v1 ⋯ v𝑛] (2.32)

The system of equations (2.31) can thus be written as
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AP = PJ

where

J = ⎛⎜
⎝

𝜌1 0
⋱

0 𝜌𝑛

⎞⎟
⎠

Because eigenvectors for distinct eigenvalues are linearly independent, P is nonsingular and
therefore invertible. We can write

P−1AP = J

Thus, we can use (2.32) to transform the system (2.28), defined in the variables x, to a system
in the variables y = P−1x, which means that x = Py. It follows that

ẏ = P−1ẋ = P−1Ax = P−1APy = Jy

Because J is a diagonal matrix, the solution of the system (C.59) can be obtained very easily
as the vector of solutions to each variable 𝑦𝑖 :

⎛⎜
⎝

𝑦1(𝑡)
⋮

𝑦𝑛(𝑡)
⎞⎟
⎠

= ⎛⎜
⎝

𝑐1𝑒𝜌1𝑡

⋮
𝑐𝑛𝑒𝜌𝑛𝑡

⎞⎟
⎠

Finally, we can use the transformation x = Py to return to the original variables 𝑥1, … , 𝑥𝑛
:

x(𝑡) = Py(𝑡) = [ v1 ⋯ v𝑛 ] ⎛⎜
⎝

𝑐1𝑒𝜌1𝑡

⋮
𝑐𝑛𝑒𝜌𝑛𝑡

⎞⎟
⎠

= 𝑐1𝑒𝜌1𝑡v1 + 𝑐2𝑒𝜌2𝑡v2 + ⋯ + 𝑐𝑛𝑒𝜌𝑛𝑡v𝑛

Thus, under the assumption that the 𝑛 × 𝑛 matrix A has 𝑛 distinct real eigenvalues
𝜌1, 𝜌2, … , 𝜌𝑛, with corresponding eigenvectors v1, v2, … , v𝑛, the general solution of the
homogeneous linear system (2.28) is given by

x(𝑡) = 𝑐1𝑒𝜌1𝑡v1 + 𝑐2𝑒𝜌2𝑡v2 + ⋯ + 𝑐𝑛𝑒𝜌𝑛𝑡v𝑛.

The solution in the cases of complex eigenvalues or multiple eigenvalues without enough eigen-
vectors is analogous to the solution of the second-order homogeneous system analyzed in Sec-
tion 2.4.2
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Steady states and stability conditions are defined in an analogous way to those for first-and
second-order differential equations. Assuming that the vector of 𝑔 s consists of constants, one
gets the nonhomogeneous system:

⎛⎜
⎝

̇𝑥1(𝑡)
⋮

̇𝑥𝑛(𝑡)
⎞⎟
⎠

= ⎛⎜
⎝

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞⎟
⎠

⎛⎜
⎝

𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)
⎞⎟
⎠

+ ⎛⎜
⎝

𝑔1
⋮

𝑔𝑛

⎞⎟
⎠

The steady state, if it exists, can be derived by setting the change in the 𝑥 s equal to zero. A
steady state exists if A is nonsingular and is given by

⎛⎜
⎝

̄𝑥1
⋮
̄𝑥𝑛

⎞⎟
⎠

= − ⎛⎜
⎝

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞⎟
⎠

−1

⎛⎜
⎝

𝑔1
⋮

𝑔𝑛

⎞⎟
⎠

where ̄𝑥𝑖 denotes the steady state value of 𝑥𝑖. These values can be regarded as equilibrium
points. If the 𝑥𝑖 s are predetermined variables, for the system to converge to equilibrium,
all eigenvalues must be less than zero. In this case, the equilibrium is a fixed node. When
the 𝑥𝑖 s consist of 𝑝 predetermined and 𝑞 non-predetermined variables, where 𝑝 + 𝑞 = 𝑛, the
equilibrium (if it exists) is a saddle point. For the system to converge to equilibrium, there
must be 𝑝 negative eigenvalues and 𝑞 positive eigenvalues. The negative eigenvalues correspond
to the predetermined variables, which are solved for backward, and the positive eigenvalues
correspond to the non-predetermined variables which are solved for forward.

Thus, a system with 𝑝 predetermined and 𝑞 non-predetermined variables has a stable equilib-
rium (a saddle vector) if the matrix of coefficients has 𝑝 negative and 𝑞 positive eigenvalues.
The adjustment path is unique and is called a saddle path.

2.6 Nonlinear Differential Equations

In this section, we consider problems of the form:

̇𝑥(𝑡) = 𝑓(𝑥(𝑡)) (2.33)

where 𝑥(𝑡) is a vector 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), ...𝑥𝑛(𝑡)) and 𝑓 is a shortcut notation for 𝑛 different
functions. This kind of system may be difficult (or even impossible) to solve. However, it is
possible to derive some approximation of the solution by taking a first-order expansion (or
eventually higher-order) around a reference point. A good candidate is the steady state ̄𝑥
satisfying 𝑓( ̄𝑥) = 0. Hence, we get:
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𝑑 ̇𝑥(𝑡) = 𝑓( ̄𝑥)⏟
=0

+𝐽( ̄𝑥) ⋅ (𝑥(𝑡) − ̄𝑥)

where 𝐽( ̄𝑥) is the Jacobian matrix with entries 𝑓 ′( ̄𝑥) for each 𝑥𝑖(𝑡),𝑖 = 1, ..., 𝑛.

Treating (𝑥(𝑡) − ̄𝑥) = 𝑑𝑥(𝑡) as the new variable of interest, one can see that we obtain a 𝑛
system of first-order linear differential equations and use the techniques from Section 2.5.

2.7 Qualitative Analysis

It is possible to introduce some qualitative informations about systems. We focus on a generic
pair of linear differential equation of the form:

̇𝑥(𝑡) = 𝑎𝑥𝑡 + 𝑏𝑦𝑡 + 𝑐
̇𝑦(𝑡) = 𝑑𝑥𝑡 − 𝑒𝑦𝑡 + 𝑓

Without loss of generality, assume that all parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are positive. We can draw
the isoclines ̇𝑥(𝑡) = 0 and ̇𝑦(𝑡) = 0 in the plane {𝑥(𝑡), 𝑦(𝑡)}, that is the loci:

̇𝑥(𝑡) = 0 ∶ ̃𝑦 = −𝑎𝑦 + 𝑐
𝑏

̇𝑦(𝑡) = 0 ∶ ̂𝑦 = 𝑑𝑥 + 𝑓
𝑒

The next step is to characterize the vector field, that is the qualitative changes of 𝑥𝑡 and 𝑦𝑡
for every pair 𝑥, 𝑦 outside the isoclines. For ̇𝑥(𝑡) = 0, we have:

̇𝑥(𝑡) = 0 ≥ 0 ⇔ 𝑦(𝑡) ≥ −𝑎𝑥(𝑡) + 𝑐
𝑏 ≡ ̃𝑦

̇𝑦(𝑡) = 0 ≤ 0 ⇔ 𝑦(𝑡) ≤ 𝑑𝑥(𝑡) + 𝑓
𝑒 ≡ ̂𝑦

On the first hand, for every pair {𝑥(𝑡), 𝑦(𝑡)} located on the right (left) of the locus ̃𝑦, the value
of 𝑥(𝑡) increases (decreases) and goes on the right (left). On the other hand, for every pair
{𝑥(𝑡), 𝑦(𝑡)} located below (above) the locus ̂𝑦, the value of 𝑦(𝑡) increases (decreases) and goes
upward (downward).
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3 Difference Equations

In this chapter, we review the properties and solution methods of first- and second-order
difference equations, as well as of systems of first-order difference equations.

Difference equations are the analog of differential equations when time is a discrete vari-
able defined in terms of integers. They are an indispensable tool for the study of dynamic
economic problems in discrete time. We shall thus assume that time is an integer 𝑡 =
… , −2, −1, 0, 1, 2, …, instead of 𝑡 being a real continuous variable.

After defining lag operators, we then proceed to present solution methods for first- and second-
order linear difference equations and for systems of interdependent linear difference equa-
tions.

3.1 Lag Operators and Difference Equations

To define and analyze difference equations, it is useful to first define lag operators. The value
of a variable 𝑥 in period 𝑡 is denoted by 𝑥𝑡. The lag operator 𝐿 for a variable 𝑥𝑡 is defined
by

𝐿𝑛𝑥𝑡 = 𝑥𝑡−𝑛

for 𝑛 = … , −2, −1, 0, 1, 2, …
Thus, the multiplication of 𝑥𝑡 by 𝐿 denotes the value of the variable in the previous period,
and the multiplication of the variable by 𝐿𝑛 denotes the value of the variable in period 𝑡 − 𝑛.
Note than if 𝑛 is negative (i.e., 𝑛 < 0 ), the lag operator shifts the variable 𝑛 periods into the
future.

This definition is mathematically somewhat loose. More formally, let us assume a sequence

{𝑥𝑡}
∞
𝑡=−∞

that links a real number 𝑥 with every integer 𝑡. Applying the operator 𝐿𝑛 to this sequence,
we get a new sequence:
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{𝑦𝑡}
∞
𝑡=−∞ = {𝑥𝑡−𝑛}∞

𝑡=−∞

The operator 𝐿𝑛 projects one sequence onto another.

Let us now examine a polynomial in the lag operator:

𝐴(𝐿) = 𝑎0 + 𝑎1𝐿 + 𝑎2𝐿2 + ⋯ =
∞

∑
𝑗=0

𝑎𝑗𝐿𝑗

Applying the polynomial 𝐴(𝐿) to variable 𝑥𝑡, we get a moving sum of 𝑥 s in different time
periods:

𝐴(𝐿)𝑥𝑡 =
∞

∑
𝑗=0

𝑎𝑗𝐿𝑗𝑥𝑡 =
∞

∑
𝑗=0

𝑎𝑗𝑥𝑡−𝑗

Let us confine ourselves to rational functions (i.e., polynomials) that can be expressed as the
ratio of two finite polynomials in 𝐿. Assume that

𝐴(𝐿) = 𝐵(𝐿)
𝐶(𝐿) (3.1)

where

𝐵(𝐿) =
𝑚

∑
𝑗=0

𝑏𝑗𝐿𝑗

𝐶(𝐿) =
𝑛

∑
𝑗=0

𝑐𝑗𝐿𝑗
(3.2)

and 𝑏𝑗 and 𝑐𝑗 are constants. The combination of (3.1) and (3.2) imposes a more economical
and restrictive form on 𝑎𝑗, without serious loss of generality.

A special case of (3.1) and (3.2) is the so-called geometric polynomial, which takes the form

𝐴(𝐿) = 1
1 − 𝜆𝐿 (3.3)

From the properties of geometric progressions, the geometric polynomial can be expanded in
two ways:

𝐴(𝐿) = 1
1 − 𝜆𝐿 = 1 + 𝜆𝐿 + 𝜆2𝐿2 + ⋯ (3.4)
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𝐴(𝐿) = 1
1 − 𝜆𝐿 = − 1

𝜆𝐿 (1 + 1
𝜆𝐿−1 + 1

𝜆2 𝐿−2 + ⋯) (3.5)

The expansion (3.4) is used when |𝜆| < 1, and the expansion (3.5) when |𝜆| > 1 .

If we multiply the geometric polynomial (3.3) by some variable 𝑥𝑡, we get

𝐴(𝐿)𝑥𝑡 = 1
1 − 𝜆𝐿𝑥𝑡 (3.6)

With the expansion (3.4) for 𝐴(𝐿) we get

𝐴(𝐿)𝑥𝑡 = 1
1 − 𝜆𝐿𝑥𝑡 =

∞
∑
𝑖=0

𝜆𝑖𝐿𝑖𝑥𝑡 =
∞

∑
𝑖=0

𝜆𝑖𝑥𝑡−𝑖 (3.7)

If |𝜆| < 1, and {𝑥𝑡}
∞
𝑙=−∞ is a finite sequence of real numbers, then (3.7) defines a finite sequence

of real numbers as well.

In contrast, we have the alternative expansion of (3.6). Using (3.5), we get

𝐴(𝐿)𝑥𝑡 = 1
1 − 𝜆𝐿𝑥𝑡 = (𝜆𝐿)−1

∞
∑
𝑖=0

𝜆−𝑖𝐿−𝑖𝑥𝑡 =
∞

∑
𝑖=0

𝜆−𝑖𝑥𝑡+𝑖 (3.8)

If |𝜆| > 1, and {𝑥𝑡}
∞
𝑡=−∞ is a finite sequence of real numbers, then (3.8) defines a finite sequence

of real numbers as well, because we have ∣𝜆−1∣ < 1.

In economics, because we usually seek convergence to some equilibrium, we seek the analysis
of finite sequences. Thus, we select the backward expansion when |𝜆| < 1, and the forward
expansion when |𝜆| > 1.

A difference equation (or recurrence relation) equates a polynomial in the various iterates of
a variable-that is, in the values of the elements of a sequence-to zero.

An 𝑛 th-order linear difference equation with constant coefficients takes the form

𝑎0𝑥𝑡 + 𝑎1𝑥𝑡−1 + 𝑎2𝑥𝑡−2 + ⋯ + 𝑎𝑛𝑥𝑡−𝑛 − 𝑏 =
𝑛

∑
𝑗=0

𝑎𝑗𝐿𝑗𝑥𝑡 − 𝑏 = 0

where 𝑎𝑗, 𝑗 = 0, 1, 2, … , 𝑛 and 𝑏 are constant coefficients.

By equating the right-hand side of the geometric polynomial (3.7) to zero, we get
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∞
∑
𝑖=0

𝜆𝑖𝑥𝑡−𝑖 = 𝑥𝑡 + 𝜆𝑥𝑡−1 + 𝜆2𝑥𝑡−2 + ⋯ = 0

This is an example of an infinite-order linear difference equation.

3.2 First-Order Linear Difference Equations

Let us first consider the first-order linear difference equation with constant coefficients:

𝑥𝑡 = 𝑎 + 𝑏𝑥𝑡−1 (3.9)

Using lag operators, (3.9) can be written as

(1 − 𝑏𝐿)𝑥𝑡 = 𝑎 (3.10)

Dividing both sides of (3.10) by (1 − 𝑏𝐿) and adding 𝑐𝑏𝑡, we get

𝑥𝑡 = 𝑎
1 − 𝑏𝐿 + 𝑐𝑏𝑡 = 𝑎

1 − 𝑏 + 𝑐𝑏𝑡 (3.11)

where 𝑐 is an arbitrary constant. We include the term 𝑐𝑏𝑡 because for any 𝑐,

(1 − 𝑏𝐿)𝑐𝑏𝑡 = 𝑐𝑏𝑡 − 𝑏𝑐𝑏𝑡−1 = 0

Hence, if we multiply (3.11) by (1 − 𝑏𝐿), we get back (3.10). Equation (3.11) determines the
general solution of the linear first-order difference equation (3.9).

To find a particular solution, we must determine 𝑐. Assume that in period 𝑡 = 0, 𝑥 had the
value 𝑥0. From (3.11), it follows that

𝑐 = 𝑥0 − 𝑎
1 − 𝑏

Thus, the particular solution of (3.9) is given by

𝑥 = 𝑎
1 − 𝑏 + (𝑥0 − 𝑎

1 − 𝑏) 𝑏𝑡 (3.12)

If the boundary condition is such that 𝑥0 = 𝑎/(1 − 𝑏), then (3.12) implies that
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𝑥𝑡 = 𝑥0, ∀𝑡 ≥ 0

Thus, 𝑎/(1 − 𝑏) can be seen as an equilibrium value. If 𝑥 = 𝑎/(1 − 𝑏), then 𝑥 tends to stay at
this level.

In addition, 𝑥0 if |𝑏| < 1, (3.12) implies that for any 𝑥0, we have

lim
𝑡→∞

𝑥𝑡 = 𝑎
1 − 𝑏 (3.13)

Equation (3.13) implies that the difference equation is stable, because 𝑥 tends to approach its
equilibrium value over time from any initial condition. In this case, the equilibrium value is a
stable node.

If |𝑏| > 1, the only path that leads to the equilibrium value is the immediate jump of 𝑥 to the
equilibrium value 𝑎/(1 − 𝑏). This solution requires

𝑐 = 0, 𝑥𝑡 = 𝑎/(1 − 𝑏), ∀𝑡.
The equilibrium value in this case is a saddle point.

3.3 Second-Order Linear Difference Equations

We next turn to the second-order linear difference equation with constant coefficients, of the
form

𝑥𝑡 = 𝑎 + 𝑏𝑥𝑡−1 + 𝑐𝑥𝑡−2 (3.14)

Using the lag operator, (3.14) can be written as

(1 − 𝑏𝐿 − 𝑐𝐿2) 𝑥𝑡 = 𝑎 (3.15)

Equation (3.15) can be expressed as

(1 − 𝜆1𝐿) (1 − 𝜆2𝐿) 𝑥𝑡 = 𝑎 (3.16)

where

𝜆1 + 𝜆2 = 𝑏
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𝜆1𝜆2 = −𝑐

and 𝜆1 and 𝜆2 are the two roots of the second-order linear difference equation (3.14).

There are three possible cases, depending on the discriminant of the characteristic equa-tion
of (3.14).

• Case 1: 𝑏2 > −4𝑐 The discriminant is positive, and the roots are real and distinct, taking
the form

𝜆1 = 𝑏 +
√

𝑏2 + 4𝑐
2

𝜆2 = 𝑏 −
√

𝑏2 + 4𝑐
2

From (3.16), the general solution of (3.14) takes the form

𝑥𝑡 = 𝑎
(1 − 𝜆1) (1 − 𝜆2) + 𝑑1𝜆𝑡

1 + 𝑑2𝜆𝑡
2 = 𝑎

(1 − 𝑏 − 𝑐) + 𝑑1𝜆𝑡
1 + 𝑑2𝜆𝑡

2

where 𝑑1 and 𝑑2 are two arbitrary constants. To determine the arbitrary constants, one needs
two boundary conditions, depending on the values of the two roots.

As in the case of a first-order difference equation, 𝑎/(1 − 𝑏 − 𝑐) can be seen as the equili-brium
value of 𝑥.

We have convergence to the equilibrium value if |𝜆1| < 1 and |𝜆2| < 1. In this case, the
equilibrium value will be a stable node, and to determine the two arbitrary constants, 𝑑1 and
𝑑2, we need two initial conditions 𝑥1, 𝑥2 ≠ 0.

If the two roots lie on either side of unity (i.e., if |𝜆1| < 1 and |𝜆2| > 1 ), then the equilibrium
value will be a saddle point. In this case, to determine the two arbitrary constants 𝑑1 and
𝑑2, we need one initial and one final condition. The final condition can be none other than
the equilibrium value. As a result, we shall have convergence to the equilibrium value only if
𝑑1 ≠ 0 and 𝑑2 = 0.

If both roots are greater than unity (i.e., if |𝜆1| > 1 and |𝜆2| > 1 ), then the only solution
is the immediate jump of 𝑥 to the equilibrium value 𝑎/(1 − 𝑏− 𝑐). This solution requires
𝑑1 = 0, 𝑑2 = 0, and 𝑥𝑡 = 𝑎/(1 − 𝑏 − 𝑐) for all 𝑡.

• Case 2: 𝑏2 = −4𝑐 The discriminant is equal to zero, and we have two equal real roots of
the form
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𝜆1 = 𝜆2 = 𝜆 = 𝑏
2.

The general solution takes the form

𝑥𝑡 = 𝑎
(1 − 𝑏 − 𝑐) + 𝑑1𝜆𝑡 + 𝑑2𝑡𝜆𝑡

If |𝜆| < 1, to determine the two arbitrary constants 𝑑1 and 𝑑2, we need two initial conditions.

If 𝜆 is greater than unity in absolute value (i.e., if |𝜆| > 1 ), then the only solution is the
immediate jump of 𝑥 to the equilibrium value 𝑎/(1−𝑏−𝑐). This solution requires 𝑑1 = 0, 𝑑2 = 0,
and 𝑥𝑡 = 𝑎/(1 − 𝑏 − 𝑐) for all 𝑡.

• Case 3 𝑏2 < −4𝑐 The discriminant is negative, and we have two complex roots, which
take the form of a pair of complex conjugates:

𝜆1 = 𝜇 + 𝜈𝑖

𝜆2 = 𝜇 − 𝑣𝑖

where 𝜇 = 𝑏
2 , and 𝑣 =

√
−4𝑐−𝑏2

2 .

Using De Moivre’s theorem and the Pythagorean theorem the solution takes the form

𝑥𝑡 = 𝑎
1 − 𝑏 − 𝑐 + 𝑅𝑡 ((𝑑1 + 𝑑2) cos(𝜃𝑡) + (𝑑1 − 𝑑2) sin(𝜃𝑡))

where 𝑅 and 𝜃 are defined by

𝑅 = √𝜇2 + 𝑣2 = √𝑏2 − 4𝑐 − 𝑏2

4 = √−𝑐

and

cos(𝜃) = 𝜇√−𝑐 = 𝑏
2√−𝑐 , sin(𝜃) = 𝑣√−𝑐 =

√
−4𝑐 − 𝑏2

2√−𝑐

This solution will produce oscillations of a periodic nature. The oscillations will be dampened
if and only if |𝑐| < 1. In such a case, there will be cyclical convergence to the equilibrium
value. In the case |𝑐| < 1, there will be continuous oscillations of a constant periodicity. And
if |𝑐| > 1, there will be divergent oscillations, unless 𝑥 jumps immediately to its equilibrium
value.
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3.4 A Pair of First-Order Linear Difference Equations

We next turn to a second-order system of two linear first-order difference equations. The
system is described by

𝑥𝑡 = 𝑎10 + 𝑎11𝑥𝑡−1 + 𝑎12𝑦𝑡−1
𝑦𝑡 = 𝑎20 + 𝑎21𝑥𝑡−1 + 𝑎22𝑦𝑡−1

(3.17)

As in the case of a system of two first-order differential equations, the first method of solving
this system is the substitution method. We can use the second equation to substitute for 𝑦𝑡−1
in the first equation, and thus obtain a second-order difference equation in 𝑥 :

𝑥𝑡 = 𝑎 + 𝑏𝑥𝑡−1 + 𝑐𝑥𝑡−2 (3.18)

where 𝑎 = (𝑎10 (1 − 𝑎22) + 𝑎12𝑎20) , 𝑏 = 𝑎11 + 𝑎22, and 𝑐 = − (𝑎11𝑎22 − 𝑎12𝑎21).
Equation (3.18) has the same form as (3.14) and can be solved as an ordinary second-order
linear difference equation with constant coefficients. Making use of the lag operator, the
homogeneous equation corresponding to (3.18) can be written as

(𝐿2 − 𝑎11 + 𝑎22
𝑎11𝑎22 − 𝑎12𝑎21

𝐿 + 1
𝑎11𝑎22 − 𝑎12𝑎21

) 𝑥𝑡 = 0.

The two roots of the polynomial in the lag operator must satisfy the characteristic equation

𝜆2 − 𝑎11 + 𝑎22
𝑎11𝑎22 − 𝑎12𝑎21

𝜆 + 1
𝑎11𝑎22 − 𝑎12𝑎21

= 0 (3.19)

By going through the alternative substitutions, a similar second-order difference equation can
be obtained for the second variable 𝑦𝑡.

Alternatively, one can rewrite the system (3.17) in matrix form as

(𝑥𝑡
𝑦𝑡

) = ( 𝑎11 𝑎12
𝑎21 𝑎22

) (𝑥𝑡−1
𝑦𝑡−1

) + (𝑎10
𝑎20

) (3.20)

The homogeneous system corresponding to (3.20), with 𝑎10 = 𝑎20 = 0, takes the form

(𝑥𝑡
𝑦𝑡

) = ( 𝑎11 𝑎12
𝑎21 𝑎22

) (𝑥𝑡−1
𝑦𝑡−1

) (3.21)

Using the lag operator 𝐿, (3.20) can be rewritten as
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(𝑥𝑡
𝑦𝑡

) ( 1 − 𝑎11𝐿 −𝑎12𝐿
−𝑎21𝐿 1 − 𝑎22𝐿 ) = (0

0)

For (3.20) to have a solution, the matrix in the lag operator must be singular. Therefore, its
determinant must be equal to zero. Thus, for a solution to exist, we must have

det ( 1 − 𝑎11𝐿 −𝑎12𝐿
−𝑎21𝐿 1 − 𝑎22𝐿 ) = 0

This condition implies a polynomial in the lag operator with characteristic equation

𝜆2 − 𝑎11 + 𝑎22
𝑎11𝑎22 − 𝑎12𝑎21

𝜆 + 1
𝑎11𝑎22 − 𝑎12𝑎21

= 0

which is identical to (3.19), the characteristic equation of the second-order difference equation
(3.18), and will of course give the same solution for the two roots.

However, even this solution method becomes unwieldy for higher-order systems when there
are more than two variables. It is thus desirable to investigate other solution methods. To do
so, it is worth generalizing the system to one of 𝑛 first-order linear difference equations.

3.5 A System of n First-Order Linear Difference Equations

Let us consider the following system of 𝑛 first-order difference equations. Such systems arise
quite often in dynamic macroeconomics:

𝑥1,𝑡 = 𝑎10 + 𝑎11𝑥1,𝑡−1 + 𝑎12𝑥2,𝑡−1 + ⋯ + 𝑎1𝑛𝑥𝑛,𝑡−1
𝑥2,𝑡 = 𝑎20 + 𝑎21𝑥1,𝑡−1 + 𝑎22𝑥2,𝑡−1 + ⋯ + 𝑎2𝑛𝑥𝑛,𝑡−1
⋮
𝑥𝑛,𝑡 = 𝑎𝑛0 + 𝑎𝑛1𝑥1,𝑡−1 + 𝑎𝑛2𝑥2,𝑡−1 + ⋯ + 𝑎𝑛𝑛𝑥𝑛,𝑡−1

(3.22)

In matrix form, the system (3.22) can be written as

⎛⎜
⎝

𝑥1,𝑡
⋮

𝑥𝑛,𝑡

⎞⎟
⎠

= ⎛⎜
⎝

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

⎞⎟
⎠

⎛⎜
⎝

𝑥1,𝑡−1
⋮

𝑥𝑛,𝑡−2

⎞⎟
⎠

+ ⎛⎜
⎝

𝑎10
⋮

𝑥𝑛0

⎞⎟
⎠

(3.23)

By defining the vector of 𝑥 as x, the matrix of multiplicative parameters as A, and the vector
of the constants as a0, the system can be written as
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x𝑡 = Ax𝑡−1 + a0 (3.24)

If 𝑎𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 in the system (3.23), then the 𝑛 equations are uncoupled, and the system
can be solved as 𝑛 independent first-order linear difference equations with solutions

𝑥𝑖,𝑡 = 𝑎𝑖0
1 − 𝑎𝑖𝑖

+ (𝑥𝑖,0 − 𝑎𝑖0
1 − 𝑎𝑖𝑖

) (𝑎𝑖𝑖)
𝑡

where 𝑥𝑖,0 is a boundary value for 𝑥𝑖.

Thus, if we could transform the system (3.23) into one with a coefficient matrix that is diagonal,
we could easily calculate the solution. The question is how to transform the system into one
with a diagonal coefficient matrix.

We know from the properties of matrices that the coefficient matrix A can be transformed
as

A = PJP−1 (3.25)

where J is a diagonal matrix with the eigenvalues of A on its diagonal, and P is a matrix
consisting of the corresponding (right) eigenvectors. Equation (3.25) implies that

AP = PJ

We can use these properties to rewrite the system (3.24) as

x𝑡 = Ax𝑡−1 + a0 = PJP−1x𝑡−1 + a0 (3.26)

Multiplying both sides of (3.26) by P−1, we get

P−1x𝑡 = JP−1x𝑡−1 + P−1a0

Defining a new vector of variables X𝑡 = P−1x𝑡, and a new vector of constants A0 = P−1a0,
we can rewrite (3.24) as

X𝑡 = JX𝑡−1 + A0

Thus, by using the matrix consisting of the eigenvectors of the original coefficient matrix
A to define new variables and new constants, we can transform the original coupled system
of difference equations to a system of decoupled difference equations in the newly defined
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variables, as in the case of differential equations. The decoupled system can be solved for each
of the transformed variables in X. We can then find the solutions for the original vector of
variables by using the reverse transformation

x𝑡 = PX𝑡

By using the diagonal matrix of the eigenvalues of A and the matrix of the corresponding
(right) eigenvectors, we can solve the system of 𝑛 first-order linear difference equations (3.22).
The solution method is similar in spirit to the one for a system of 𝑛 first-order differential
equations discussed in Chapter 2.

Important

Keep in mind that the conditions for stability for discrete and continuous time systems
are different. In continuous time, the conditions requires to compare the eigenvalues 𝜆𝑖
to zero (i.e. a positive eigenvalue is unstable, a negative eigenvalue is stable). In contrast,
in discrete time systems, the eigenvalues 𝜆𝑖 (in absolute value) has to be compared to
unity.(i.e. a stable eigenvalue is within the unit circle, an unstable eigenvalue is outside
the unit circle).

3.6 Nonlinear difference equations

We are interested now in problems of the form:

𝑥𝑡+1 = 𝑓(𝑥𝑡)

with 𝑥𝑡 a vector 𝑥𝑡 = (𝑥1,𝑡, 𝑥2,𝑡, ..., 𝑥𝑛,𝑡) and 𝑓 is a shortcut notation for 𝑛 different functions.
Just like in the case of differential equations, we can approximate in the neigborhood of the
steady state ̄𝑥 satisfying ̄𝑥 = 𝑓( ̄𝑥). Taking a first-order expansion:

𝑥𝑡+1 = 𝑓( ̄𝑥)⏟
=𝑥̄

+𝐽(𝑥𝑡 − ̄𝑥)

Where 𝐽 is the Jacobian matrix with entries 𝑓 ′( ̄𝑥) for each 𝑥𝑖,𝑡, 𝑖 = 1, ..., 𝑛.

Treating 𝑑𝑥𝑡 = (𝑥𝑡 − ̄𝑥) and 𝑑𝑥𝑡+1 = (𝑥𝑡+1 − ̄𝑥) as the new variables of interest, one can see
that we obtain a 𝑛 system of first-order linear differential equations and use the techniques
from Section 3.5.
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3.7 Qualitative Analysis

It is possible to introduce some qualitative informations about systems. We focus on a generic
pair of linear difference equation of the form:

𝑥𝑡+1 = ̃𝑎𝑥𝑡 + 𝑏𝑦𝑡 + 𝑐
𝑦𝑡+1 = 𝑑𝑥𝑡 − ̃𝑒𝑦𝑡 + 𝑓

Define Δ𝑥𝑡+1 = 𝑥𝑡+1 − 𝑥𝑡 and Δ𝑦𝑡+1 = 𝑦𝑡+1 − 𝑦𝑡, the above system rewrite:

Δ𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏𝑦𝑡 − 𝑐 ∶
Δ𝑦𝑡+1 = 𝑑𝑥𝑡 − 𝑒𝑦𝑡 + 𝑓

where 𝑎 = ̃𝑎 − 1 and 𝑒 = 1 + ̃𝑒. Without loss of generality, assume that all parameters
𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are positive. We can draw the isoclines Δ𝑥𝑡+1 = 0 and Δ𝑦𝑡+1 = 0 in the plane
{𝑥𝑡, 𝑦𝑡}, that is the loci:

Δ𝑥𝑡+1 = 0 ∶ ̃𝑦 = −𝑎𝑥 + 𝑐
𝑏

Δ𝑦𝑡+1 = 0 ∶ ̂𝑦 = 𝑑𝑥 + 𝑓
𝑒

The next step is to characterize the vector field, that is the qualitative changes of 𝑥𝑡 and 𝑦𝑡
for every pair 𝑥, 𝑦 outside the isoclines. For Δ𝑥𝑡+1, we have:

Δ𝑥𝑡+1 ≥ 0 ⇔ 𝑦𝑡 ≥ −𝑎𝑦 + 𝑐
𝑏 ≡ ̃𝑦

Δ𝑦𝑡+1 ≤ 0 ⇔ 𝑦𝑡 ≤ 𝑑𝑥 + 𝑓
𝑒 ≡ ̂𝑦

On the first hand, for every pair {𝑥𝑡, 𝑦𝑡} located on the right (left) of the locus ̃𝑦, the value of
𝑥𝑡 increases (decreases) and goes on the right (left). On the other hand, for every pair {𝑥𝑡, 𝑦𝑡}
located below (above) the locus ̂𝑦, the value of 𝑦𝑡 increases (decreases) and goes upward
(downward).
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4 Intertemporal Optimization

4.1 Introduction

In this chapter, we study techniques applied to dynamic optimizations. Optimization in dy-
namics economic problems, which are problems in which variables change over time, does not
requires new principles vis-à-vis static problems but possesses a specific structure needed to
take care about.

The most important part of this specific structure is the relation between stocks and flows.
Some variables, which we will denote by 𝑦, have the form of stocks, changing gradually over
time. Other variables, which we will denote by 𝑥, have the form of flows, which can change
freely at any instant. Mathematically, stocks are called state variables and flows are called
control variables.1

Stock variables evolves according both stocks and flows, control variables control changes in
state variables. For instance, savings in period 𝑡 determine the change in households wealth
from period 𝑡 to period 𝑡 + 1. A general form of the volution of state variables is:

𝑦𝑡+1 − 𝑦𝑡 = 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) (4.1)
where 𝑡, 𝑡 + 1, ... are discrete time periods, 𝑦 is a state variable (stocks), 𝑥 is a control variable
(flows) and 𝑄 is a vector function. There might be additional restrictions that we summarize
under the form:

𝐺(𝑦𝑡, 𝑥𝑡, 𝑡) ≤ 0 (4.2)

Note that restrictions (4.1) and (4.2) have different structure: the former involves directly a
dynamic restriction while the latter is a static.

Furthermore, in most dynamic economic problems, agents have to optimize an objective func-
tion of the following additively-separable form:

𝑇
∑
𝑡=0

𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) (4.3)

1Not all state variables are stock variable. For instance, past decisions on controls can also be considered as
state.
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subject to restrictions (4.1) and (4.2). Periods start at 𝑡 = 0 and end at 𝑇 , which is potentially
infinite. For instance, the function 𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) can represent some households’ utility function
or firms’ profit at date 𝑡.2 Hence, we seek, in such examples, to maximize the sum of stream
of instantaneous utilities (or profits) over time. The value of the initial stock at time 0 is
taken as given but also at date T+1: such problems have therefore both initial and terminal
conditions, the terminal condition being called transversality conditions.

We are going to present two widely used techniques in economics: optimal control and dynamic
programming. Both are going to be applied in discrete and continuous time.

4.2 Optimal Control Methods

4.2.1 The Optimal Control Method in Discrete Time

In the optimal control problem, we want to select the variables 𝑦𝑡 and 𝑥𝑡 for 𝑡 = 0, 1, 2..., 𝑇 to
find the optimal solution of (4.3) subject to the constraints (4.1) and (4.2). To say it differently,
we want to find the sequence 𝑥0, 𝑥1, 𝑥2...𝑥𝑇 and 𝑦1, 𝑦2, ..., 𝑦𝑇 (remember that 𝑦0 and 𝑦𝑇 +1 are
given) satisfying this problem.

To do so, we define multipliers (or shadow values) and construct the Lagrangian function.
Define as 𝜇𝑡 the multiplier for the constraints (4.2). These have the usual interpretation of
shadow values for the constraints in period 𝑡. The multipliers for the constraints (4.1) are
different since they define the first-order change in the objective function if the constraint in
the change of the stock is loosened (i.e. if we have a marginal increase in the stock variable
𝑦𝑡+1). They are therefore shadow values of the stock variables in period 𝑡 + 1 and we denote
them 𝜆𝑡+1.

We define as ℒ the Lagrangian function of the full intertemporal problem:

ℒ =
𝑇

∑
𝑡=0

{𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝜆𝑡+1 [𝑦𝑡 + 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) − 𝑦𝑡+1] − 𝜇𝑡𝐺(𝑦𝑡, 𝑥𝑡, 𝑡)}

Note that because of the time additive structure of the problem, multipliers are also dated at
some period.

The first-order conditions for the optimization of the Lagrangian function with respect to the
control variables 𝑥 are:

𝜕ℒ
𝜕𝑥𝑡

= 0 ∶ 𝐹𝑥(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝜆𝑡+1𝑄𝑥(𝑦𝑡, 𝑥𝑡, 𝑡) − 𝜇𝑡𝐺𝑥(𝑦𝑡, 𝑥𝑡, 𝑡) = 0

2In such problems, we may see 𝑥𝑡 and 𝑦𝑡 as respectively the consumption level and the wealth owned at date
𝑡 in the case of a household, or for the problem of a firm, 𝑥𝑡 as the investment decision and 𝑦𝑡 as the capital
stock installed.
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for 𝑡 = 0, 1, ..., 𝑇 and where 𝐹𝑥, 𝑄𝑥, and 𝐺𝑥 are the partial first-order derivatives with respect
to 𝑥. Note again that we have 𝑇 + 1 first-order conditions with respect to 𝑥 but the only real
differences between them is their date.

With respect to 𝑦, the first-order conditions are a bit more complex because 𝑦 appears in
two consecutive periods, and therefore two terms of the sum. Let’s rearrange the Lagrangian
function to see it clearly.

ℒ =
𝑇

∑
𝑡=1

{𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝜆𝑡+1𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝑦𝑡(𝜆𝑡+1 − 𝜆𝑡) − 𝜇𝑡𝐺(𝑦𝑡, 𝑥𝑡, 𝑡)}

+𝐹(𝑦0, 𝑥0, 0) + 𝜆1𝑄(𝑦0, 𝑥0, 0) + 𝑦0𝜆1 − 𝑦𝑇 +1𝜆𝑇 +1

The final four terms in the previous equation refer to given value of 𝑦 in period 0 and 𝑇 + 1.
The first order-condition for the optimum of ℒ for 𝑦𝑡, 𝑡 =, 1, 2..., 𝑇 are:

𝜕ℒ
𝜕𝑦𝑡

= 0 ∶ 𝐹𝑦(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝜆𝑡+1𝑄𝑦(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝜆𝑡+1 − 𝜆𝑡 − 𝜇𝑡𝐺𝑦(𝑦𝑡, 𝑥𝑡, 𝑡) = 0

⇒ 𝜆𝑡+1 − 𝜆𝑡 = − [𝐹𝑦(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝜆𝑡+1𝑄𝑦(𝑦𝑡, 𝑥𝑡, 𝑡) − 𝜇𝑡𝐺𝑦(𝑦𝑡, 𝑥𝑡, 𝑡)]
(4.4)

These conditions can be written in a more comprehensive and economically useful way. Define
a new function, the Hamiltonian function ℋ as follows:

ℋ(𝑦𝑡, 𝑥𝑡, 𝜆𝑡+1, 𝑡) = 𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝜆𝑡+1𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) (4.5)

Equation (4.5) suggests that the control variable 𝑥 must be selected to optimize
ℋ(𝑦𝑡, 𝑥𝑡, 𝜆𝑡+1, 𝑡) under the constraint 𝐺(𝑦𝑡, 𝑥𝑡, 𝑡) ≤ 0 which can be written into a new
Lagrangian:

̃ℒ(𝑦𝑡, 𝑥𝑡, 𝜆𝑡+1, 𝑡) = ℋ(𝑦𝑡, 𝑥𝑡, 𝜆𝑡+1, 𝑡) − 𝜇𝑡𝐺(𝑦𝑡, 𝑥𝑡, 𝑡)

Then equation (4.4) can be written more simply as:

𝜆𝑡+1 − 𝜆𝑡 = − ̃ℒ𝑦(𝑦𝑡, 𝑥𝑡, 𝜆𝑡+1, 𝑡) (4.6)

Finally, from (4.1) and (4.5), we get (using the Enveloppe Theorem):

𝑦𝑡+1 − 𝑦𝑡 = ℋ̃𝜆(𝑦𝑡, 𝑥𝑡, 𝜆𝑡+1, 𝑡) = 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) (4.7)

These properties of the Hamiltonian function are known as the Maximum Principle:
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Maximum Principle

The necessary first-order conditions for the optimization of (4.3) under the constraints
(4.1) and (4.2) are the following: (1) for each 𝑡, the control variables 𝑥𝑡 optimize the
Hamiltonian function (4.5) under the static constraints (4.2). (2) The changes of 𝑦𝑡 and
𝜆𝑡 over time are determined by the difference equations (4.6) and (4.7).

The Maximum Principle, proposed by Pontryagin et al. (1962), facilitates the determination
of the first-order conditions for intertemporal optimization problems. It also gives easier
interpretations of the first-order conditions of dynamic economic problems we have just seen.

In particular, changes in the decision variables 𝑥𝑡 directly impact the objective function (4.3)
but also on 𝑦𝑡+1 through the impact on 𝑄. Hence, the change in the objective function is found
by multiplying the impact of 𝑥 on Q with the shadow value 𝜆𝑡+1 of 𝑦𝑡+1. The Hamiltonian
provides a simple way of converting the one-period objective function 𝐹 to account for the
future impact of the current choice of the control variable 𝑥. A similar economic interpretation
can be obtained to the first-order conditions for the state variable 𝑦. A marginal change in 𝑦
in period 𝑡 gives the marginal change 𝐹𝑦 − 𝜇𝐺𝑦 in period 𝑡, given the shadow value of 𝜆𝑡+1
The right-hand side of (4.4) may be interpreted as a dividend. The change 𝜆𝑡+1 − 𝜆𝑡 is like a
capital gain. Equation (4.4) tells us that he dividend plus the capital gain should be equal to
zero: at the optimim, there can be no excess return from 𝑦.

4.2.2 The Optimal Control Method in Continuous Time

In many applications, it is more convenient to treat time as a continuous variable. In such
case, Equations (4.1) and (4.5) become:

̇𝑦(𝑡) = 𝑑𝑦
𝑑𝑡 = 𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡) (4.8)

𝐺(𝑦(𝑡), 𝑥(𝑡), 𝑡) ≤ 0 (4.9)

For the objective function, Equation (4.3) in continuous time becomes:

∫
𝑇

0
𝐹(𝑦(𝑡), 𝑥(𝑡), 𝑡)𝑑𝑡 (4.10)

We can use the Hamiltonian function as before:

ℋ = 𝐹(𝑦(𝑡), 𝑥(𝑡), 𝑡) + 𝜆(𝑡)𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡) (4.11)
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The FOC for the optimization of the Hamiltonian function (4.11) under the static constraints
(4.9) are:

𝜕ℋ
𝜕𝑥(𝑡) − 𝜇(𝑡) 𝜕𝐺

𝜕𝑥(𝑡) = 0 ⇒ 𝐹𝑥 + 𝜆(𝑡)𝑄𝑥 = 𝜇(𝑡)𝐺𝑥 (4.12)

𝜕ℋ
𝜕𝑦(𝑡) = −𝜆̇(𝑡) ⇒ 𝐹𝑦 + 𝜆(𝑡)𝑄𝑦 = −𝜆̇(𝑡) (4.13)

𝜕ℋ
𝜕𝜆(𝑡) = ̇𝑦(𝑡) ⇒ ̇𝑦(𝑡) = 𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡) (4.14)

These three equations are the continuous-time equivalent of the discrete time first-order con-
ditions previously obtained.

4.3 Dynamic Programming and the Bellman Equation

Dynamic programming is an alternative method of solving the problem at the beginning of
this chapter. It is an extremely useful in problems that combine time and uncertainty as ofent
happens in economics.

Our problem is the optimization of:

𝑇
∑
𝑡=0

𝐹(𝑦𝑡, 𝑥𝑡, 𝑡)

under the constraints:

𝑦𝑡+1 − 𝑦𝑡 = 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡)

and

𝐺(𝑦𝑡, 𝑥𝑡, 𝑡) ≤ 0

for 𝑡 = 0, 1, 2, .., 𝑇 . Again, the vectors of initial and final stocks 𝑦0 and 𝑦𝑇 +1 are taken as given.
We can define the optimal value that comes out of this problem as a function of the initial
stocks 𝑦0. Denote this function as 𝑉 (𝑦0). The vector of the first derivatives of this function
𝑉𝑦(𝑦0) is the vector of the shadow values of these initial stocks.

The additive separability of the objective function and the constraints allow us to make an
important generalization of the above ide. Instead of starting off at time zero, let us assume
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that we start off at time 𝑡 = 𝜏 . For the decisions thaty start at 𝜏 , the only thing that matters
from the past is the vector of stocks 𝑦𝜏 , which is the result of past decisions. Our problem
is to optimize an objective function such as (4.3) and the associated constraints, with time
starting from 𝜏 and not 0. We define 𝑉 (𝑦𝜏 , 𝜏)) as the optimal value that emerges as a function
of stocks 𝑦𝜏 and period 𝜏 . The vector of the first derivatives 𝑉𝑦(𝑦𝜏 , 𝜏) denotes the marginal
increase in the optimal value for a small increase of stocks in period 𝜏 , which is the vector of
shadow values of the initial stocks for the optimization problem that starts in period 𝜏 . This
applies at all 𝑡.
Let us then select any 𝑡 and exime the decision of choosing the values of the control variables
for thaht period. Any choice of the control viarable 𝑥𝑡 will lead to stocks 𝑦𝑡+1 through ([-#eq-
generaldynamics]). What remains is to solve the subproblem for period 𝑡 + 1 and to find the
optimal value 𝑉 (𝑦𝑡+1, 𝑡 + 1). The total value in period 𝑡 of a choice for the control variables
𝑥𝑡 starting oof with stocks 𝑦𝑡, can be separated into two terms: 𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) which occurs in
the current period; and 𝑉 (𝑦𝑡+1, 𝑡 + 1), which comes about in future periods. The choice of 𝑥𝑡
must optimize the sum of these two terms under the relevant constraints. In other words, we
have:

𝑉 (𝑦𝑡, 𝑡) = max
𝑥𝑡

[𝐹 (𝑦𝑡, 𝑥𝑡, 𝑡) + 𝑉 (𝑦𝑡, 𝑡 + 1)] (4.15)

under the constraints (4.1) and (4.2) for the specific 𝑡.
This method of intertemporal optimization, as a succession of static optimization problems,
was proposed by Richard Bellman and is called dynamic programming. The idea that whatever
the choice in period 𝑡, the choices for the subproblem that begins in period 𝑡 + 1 should be
optimal, is known as Bellman’s principle of optimality. The optimal value function 𝑉 (𝑦𝑡, 𝑡) is
called the Bellman’s value function and equation (4.16) the Bellman equation.

The Bellman equation gives us a recursive method for solving the original optimization prob-
lem. The idea is to start from the end and go backward. In period 𝑇 , there is no future, only
the requirement for a given final stock 𝑌𝑇 +1. Therefore:

𝑉 (𝑦𝑇 , 𝑇 ) = max
𝑥𝑇

𝐹(𝑌𝑡, 𝑥𝑇 , 𝑇 )

under the constraints:

𝑌𝑇 +1 = 𝑌𝑇 + 𝑄(𝑦𝑇 , 𝑥𝑇 , 𝑇 )
𝐺(𝑦𝑇 , 𝑥𝑇 , 𝑇 ) ≤ 0

This is a simple probem of static optimization, which gives us the optimal value function
𝑉 (𝑌𝑇 , 𝑇 ). This function can in turn be used in the right-hand side of (4.16) for 𝑡 = 𝑇 −
1. This equation is then another static problem, which gives us the optimal value function
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𝑉 (𝑦𝑇 −1, 𝑇 − 1). We can continue iun this way until we reach period 0. In pratice, this process
provides results for the simplest problems. Analytical solutions exist when the functions 𝐹 , 𝐺,
and 𝑄 have a very simple form. Where analytical solutions do not exist, we can use numerical
solutions, acknowledging that, for many economic applications, we have a better methods than
the recursive method to find or characterize the solution.

Note that in the presence of uncertainty, the Bellman equation takes the form:

𝑉 (𝑦𝑡, 𝑡) = max
𝑥𝑡

[𝐹 (𝑦𝑡, 𝑥𝑡, 𝑡) + 𝐸𝑡𝑉 (𝑦𝑡, 𝑡 + 1)] (4.16)

where 𝐸 is the mathematical expectations operator. To find the Bellamn equations in contin-
uous time, note that from (4.16) takes the form:

𝑉 (𝑦(𝑡), 𝑡) = max
𝑥(𝑡)

[𝐹 (𝑦(𝑡), 𝑥(𝑡), 𝑡)Δ𝑡 + 𝑉 (𝑦(𝑡 + Δ𝑡𝑦, 𝑡 + Δ𝑡)]

where Δ𝑡 is a small time interval. using a Taylor expansion of the last right-hand side term
of the equation above, we get:

𝑉 (𝑦(𝑡 + Δ𝑡𝑦, 𝑡 + Δ𝑡) = 𝑉 (𝑦(𝑡), 𝑡) + 𝑉𝑦(𝑦(𝑡), 𝑡) [𝑦(𝑡 + Δ𝑡) − 𝑦(𝑡)] + 𝑉𝑡(𝑦(𝑡), 𝑡)Δ𝑡
and where: 𝑦(𝑡 + Δ𝑡) − 𝑦(𝑡) = 𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡)Δ𝑡 from (4.1). Plug this expression and the
previous to obtain:

𝑉 (𝑦(𝑡), 𝑡) = max
𝑥(𝑡)

[𝐹(𝑦(𝑡), 𝑥(𝑡), 𝑡)Δ𝑡 + 𝑉 (𝑦(𝑡), 𝑡) + 𝑉𝑦(𝑦(𝑡), 𝑡)𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡)Δ𝑡 + 𝑉𝑡(𝑦(𝑡), 𝑡)Δ𝑡]

Divide both side by Δ𝑡 and cancelling 𝑉 (𝑦(𝑡), 𝑡) results in:

0 = max
𝑥(𝑡)

[𝐹(𝑦(𝑡), 𝑥(𝑡), 𝑡) + 𝑉𝑦(𝑦(𝑡), 𝑡)𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡) + 𝑉𝑡(𝑦(𝑡), 𝑡)]

Which is a Bellman Equation in continuous time.

4.4 Present and Current Value Problems

Before going through additional details, we need to precise two fundamental points:

1. Dynamic economic problems often discount future values of the objective function
2. if 𝑇 = +∞, there is no guarantee that the objective function (4.3) (or the continuous

time version (4.10 ) is converging. Discounting the objective function is one way to
guarantee such convergence.
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When discounted, the objective functions write:

𝑇
∑
𝑡=0

𝛽𝑡𝐹(𝑦𝑡, 𝑥𝑡, 𝑡), in discrete time

∫
𝑇

𝑡=0
exp−𝜌 𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) in continuous time

(4.17)

with 𝜌 > 0 the rate of time preference and 𝛽 = 1
1+𝜌 ∈ (0, 1), the discount factor.3 This

two parameters defines the degree of impatience of the economic agents, or how much they
subjectively value the present versus the future. In particular, a low 𝛽 (and a high 𝜌 ) means
that the agents is relatively impatient (she puts less weight on future value of the objective
function).

From there, there are two different (although equivalent) way to frame the problem. Either
build the present-value Hamiltonian or the current-value Hamiltonian. In continuous
time, the present-value Hamiltonian is:4

ℋ = 𝐹(𝑦(𝑡), 𝑥(𝑡), 𝑡) exp−𝜌𝑡 +𝜆̃(𝑡)𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡)
The first-order conditions do not merely change in comparison to Section 4.2.2:

𝜕ℋ̃
𝜕𝑥(𝑡) = 0 ∶ 𝐹𝑥 exp−𝜌𝑡 −𝜆̃(𝑡)𝑄𝑥 = 0

𝜕ℋ̃
𝜕𝑦(𝑡) = − ̇𝜆̃ ∶ 𝐹𝑦 exp−𝜌𝑡 −𝜆̃(𝑡)𝑄𝑦 = − ̇𝜆̃(𝑡)

𝜕ℋ̃
𝜕𝜆(𝑡) = ̇𝑦(𝑡) ∶ 𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡) = ̇𝑦(𝑡)

(4.18)

Using an appropriate change of variable, the current-value Hamiltonian is:

ℋ = ℋ̃ exp𝜌𝑡 = 𝐹(𝑦(𝑡), 𝑥(𝑡), 𝑡) + 𝜆(𝑡)𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡)

and where 𝜆(𝑡) = 𝜆̃(𝑡) exp−𝜌𝑡. Noting that − ̇𝜆̃(𝑡) = −(𝜆̇(𝑡) − 𝜌𝜆(𝑡)). The FOC becomes:

3These two parameters are related as follows: 𝛽𝑡 = 𝑒𝑡 ln 𝛽 = 𝑒(ln 1
1+𝜌 )𝑡 = 𝑒[ln 1−ln(1+𝜌)]𝑡 = 𝑒[0−ln(1+𝜌)]𝑡 = 𝑒−𝜌𝑡

4Without loss of generality, we exclude the static constraint 𝐺(𝑦(𝑡), 𝑥(𝑡), 𝑡).
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𝜕ℋ
𝜕𝑥(𝑡) = 0 ∶ 𝐹𝑥 − 𝜆(𝑡)𝑄𝑥 = 0

𝜕ℋ
𝜕𝑦(𝑡) = −𝜆̇(𝑡) − 𝜌𝜆(𝑡) ≡ − ̇𝜆̃ exp−𝜌𝑡 ∶ 𝐹𝑦 − 𝜆(𝑡)𝑄𝑦 − 𝜌𝜆(𝑡) = −𝜆̇(𝑡)

𝜕ℋ
𝜕𝜆(𝑡) = ̇𝑦(𝑡) ∶ 𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡) = ̇𝑦(𝑡)

(4.19)

Note that using the two first equations in (4.18) (in particular by taking the time derivative
of the first equation to eliminate the terms in 𝜆̃) leads to the same expression for the sec-
ond equation of (4.19). Hence, starting with the current-value Hamiltonian may save some
computations.

A similar approach can be done in the discrete time problem. The present-value Lagrangian
writes:

̃ℒ =
𝑇

∑
𝑡=0

𝛽𝑡𝐹(𝑦,𝑥𝑡, 𝑡) + 𝜆̃𝑡+1[𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝑦𝑡 − 𝑦𝑡+1]

with FOC:

𝜕 ̃ℒ
𝜕𝑥𝑡

= 0 ∶ 𝛽𝑡𝐹𝑥 + 𝜆̃𝑡+1𝑄𝑥 = 0

𝜕 ̃ℒ
𝜕𝑦𝑡

= 0 ∶ 𝛽𝑡𝐹𝑦 + 𝜆̃𝑡+1𝑄𝑦 + 𝜆̃𝑡+1 − 𝜆̃𝑡 = 0

𝜕 ̃ℒ
𝜕𝜆̃𝑡+1

= 0 ∶ 𝑦𝑡+1 − 𝑦𝑡 = 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡)

(4.20)

Using the change of variable 𝜆̃ = 𝛽𝑡𝜆𝑡, the current-value Lagrangian is now:

̃ℒ =
𝑇

∑
𝑡=0

𝛽𝑡𝐹(𝑦,𝑥𝑡, 𝑡) + 𝜆𝑡+1[𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝑦𝑡 − 𝑦𝑡+1]

with the following FOCs:

𝜕 ̃ℒ
𝜕𝑥𝑡

= 0 ∶ 𝐹𝑥 + 𝜆𝑡+1𝑄𝑥 = 0

𝜕 ̃ℒ
𝜕𝑦𝑡

= 0 ∶ 𝐹𝑦 + 𝜆𝑡+1𝑄𝑦 + 𝜆𝑡+1 − 𝛽−1𝜆𝑡 = 0

𝜕 ̃ℒ
𝜕𝜆𝑡+1

= 0 ∶ 𝑦𝑡+1 − 𝑦𝑡 = 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡)

(4.21)
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The main differences with the present-value FOCS are that the 𝛽𝑡 in the first equation elim-
inates themselves while in the second equation, 𝛽𝑡+1 factorizes the term in 𝑡 + 1 and the 𝛽𝑡

factorizes the term in 𝑡, cancelling each other up to one factor 𝛽. As in the continuous time
case, the two formulation are equivalent once solved, although the current-value approach
saves additional computations.

Let us look at discounted problem with the dynamic programming approach. Define:

𝑉 (𝑦𝑡, 𝑡) =
𝑇

∑
𝑡=0

𝛽𝑡𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) (4.22)

subject to:

𝑦𝑡+1 − 𝑦𝑡 = 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡)
Note that the constraint implies 𝑥𝑡 ∈ 𝐻(𝑦𝑡, 𝑦𝑡+1, 𝑡). Problem (4.22) writes:5

𝑉 (𝑦𝑡, 𝑡) = max
𝑥𝑡∈𝐻(𝑦𝑡,𝑦𝑡+1)

𝑇
∑
𝑡=0

𝛽𝑡𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) = max
𝑥𝑡∈𝐻(𝑦𝑡,𝑦𝑡+1)

[𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝛽
𝑇

∑
𝑡=0

𝛽𝑡𝐹(𝑦𝑡+1, 𝑥𝑡+1, 𝑡 + 1)]

= max
𝑥𝑡∈𝐻(𝑦𝑡,𝑦𝑡+1)

[𝐹 (𝑦𝑡, 𝑥𝑡, 𝑡) + 𝛽𝑉 (𝑦𝑡+1, 𝑡 + 1)]
(4.23)

To maximize the Bellman equation, write the static lagrangian:

ℒ = 𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝛽𝑉 (𝑦𝑡+1, 𝑡 + 1) + 𝜆 [𝑄(𝑦𝑡, 𝑥𝑡, 𝑡) + 𝑦𝑡 − 𝑦𝑡+1]

The first-order conditions are:

𝜕ℒ
𝜕𝑥𝑡

= 0 ∶ 𝐹𝑥 + 𝜆𝑄𝑥 = 0

𝜕ℒ
𝜕𝑦𝑡+1

= 0 ∶ −𝜆 + 𝛽𝑉𝑦 = 0

𝜕ℒ
𝜕𝜆 = 0 ∶ 𝑦𝑡+1 − 𝑦𝑡 = 𝑄(𝑦𝑡, 𝑥𝑡, 𝑡)

Which gives the system to be solved recursively.

5To obtain the different equalities, just decompose the sum with the terms in period 𝑡 and the remaining
terms and recognizing that: ∑𝑇

𝑡=1 𝛽𝑡𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) = ∑𝑇
𝑡=0 𝛽𝑡+1𝐹(𝑦𝑡+1, 𝑥𝑡+1, 𝑡+1) = 𝛽 ∑𝑇

𝑡=1 𝛽𝑡𝐹(𝑦𝑡, 𝑥𝑡, 𝑡) =
𝛽𝑉 (𝑦𝑡+1, 𝑡 + 1).
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The Benveniste-Scheinkman condition gives using (4.23):

𝜕𝑉 (𝑦𝑡, 𝑡)
𝜕𝑦𝑡

= 𝐹𝑦 + 𝜆 [𝑄𝑦 + 1] ⇒ 𝜕𝑉 (𝑦𝑡+1, 𝑡 + 1)
𝜕𝑦𝑡+1

= 𝐹𝑦 + 𝜆 [𝑄𝑦 + 1]

which can be plugged in the FOCs above.

In continuous time, the discounted Bellman Equation is:6

− ̇𝑉 (𝑦(𝑡), 𝑡) + 𝜌𝑉 (𝑦(𝑡), 𝑡) = max
𝑥(𝑡)∈𝐻(𝑦(𝑡),𝑡)

[𝐹(𝑦(𝑡), 𝑥(𝑡), 𝑡) + 𝑣𝑦(𝑦(𝑡), 𝑡)𝑄(𝑦(𝑡), 𝑥(𝑡), 𝑡)]

4.5 Transversality Conditions

We have mentioned that initial conditions are usually given a dynamic economic problem,
notably because this is part of history. However, we have not deal with terminal conditions,
also called transversality conditions.

In the case of finite horizon problem where 𝑇 < +∞, the terminal condition implies that
the stock variables at period 𝑇 + 1 are nil. This means that the Lagrangian has additional
constraints of the form:

𝜔𝑇 +1𝑦𝑇 +1

whose associated FOCs are:7

ℒ
𝜕𝑦𝑇 +1

= 0 ∶ −𝛽𝑇 𝜆𝑇 +1 + 𝜔𝑡+1𝛽𝑇 +1 = 0

Together with a complementary slackness condition:

ℒ
𝜕𝛽𝑇 +1𝜔𝑇 +1

= 𝑦𝑡+1 ≥ 0

𝛽𝑇 +1𝜔𝑇 +1
ℒ

𝜕𝛽𝑇 +1𝜔𝑇 +1
= 𝛽𝑇 𝜆𝑇 +1𝑦𝑡+1 = 0

Since 𝜆𝑇 +1 is not nil (because this would imply an infinite marginal benefits in the objective
function), this means that 𝑦𝑡+1 = 0.8

In continuous time, the equivalent condition at point in time 𝑇 is:
6The sketch of the proof being more complex here, it is left as an exercise.
7remember that 𝑦𝑇+1 comes also in the dynamic constraint involving 𝑄.
8For instance, in the example of a household with wealth 𝑦 and consumption level 𝑥, this means that at the

final period 𝑇 , the household consume all its wealth since it has no use for the periods after.
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𝜆(𝑇 )𝑦(𝑇 ) = 0
But what happens when we are looking at an infinite horizon problem ? The latter saves a lot
of complication (basically, everything is equivalent as a two-period problem with “today” and
“tomorrow” carried over and over) and is often assumed in dynamic problems. Then, we need
to prevent the agents to shift indefinitely its decisions on the stocks 𝑦 over and over.Hence, the
equivalent transversality condition in discrete and continuous time in infinite horizon problems
are:

lim
𝑡→+∞

𝜆𝑡𝑦𝑡 = 0 in discrete time

lim
𝑡→+∞

𝜆(𝑡)𝑦(𝑡) = 0 in continuous time

Warning

This is an abusive interpretation as Kamihigashi (2008) highlights. Transversality con-
ditions and no-Ponzi conditions, which is what we just described, have different roles, in
particular transversality conditions are necessary in any infinite horizon problem. Be
sure to check that there are satisfied (In the next chapters, they are.)

4.6 General Procedures

To summarize and give a “cookbook” approach, we present a general strategy to solve dynamic
optimization problem.

For the sequence problem:

1. Write the Lagrangian/Hamiltonian
2. Find the first-order conditions
3. Obtain the difference/differentials equations in control and state variables
4. Use the techniques in Chapter 2 or in Chapter 3 to characterize the solution.

For the recursive approach, using the Bellman equation, things may differ as you can return to
a sequence problem using the Benveniste-Scheinkman (and thus start at the third bullet-point
of the previous list after defining the Bellman equation and find the first-order conditions).
Otherwise You may also use a “guess and verify approach”, either analytically or numerically,
of the value function or the policy function to obtain the solution.
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Second-Order Conditions

Although we do not discuss second-order conditions in this chapter, one needs to check
if the Lagrangian/Hamiltonian or the Bellman equation is concave (respectively convex)
in order to maximize (respectively minimize) the original problem.

4.7 Applications

To be completed( you can refer to the next part though). One can check Dixit’s manual on
optimization.
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Part II

Benchmark Models in Growth and
Fluctuations Theory
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5 The Solow Model

5.1 Introduction

The Solow model constitutes a cornerstone in the growth analysis. Pre-solovian Growth The-
ory, turning mainly around Harrod and Domar contributions, concluded on the instability of
long-run economic growth. Such conclusions were at odds at observed data. Although the
Solow model has many pitfalls, it constitute a good starting point to discuss the structure of
the many macroeconomic models that usually keep the same production structure.

The contributions of Solow takes place within a range of observations, called Kaldor’s stylized
facts (after Kaldor, 1963). Namely:

1. GDP per capital grows over time
2. Per capital capital stock grows over time
3. Capital interest rate is roughly constant over long period
4. the capital-to-GDP ratio is roughly constant
5. Capital income and labor income share are roughly constant over long period
6. GDP per capita growth rates are different between countries

Note a consequence of point 5. is that, because the labor income share 𝑤𝐿/𝑌 is constant and
that GDP per capita 𝑌 /𝐿 grows, the wage rate 𝑤 has necessarily the same growth rate of the
GDP per capita.

These stylized fact are the benchmark points to evaluate any model of economic growth. 1

In the rest of this chapter, we first discuss an important property of benchmark growth model.
Afterwards, we describe and solve the Solow model in discrete time (the continuous time being
studied in Appendix). We study the equilibrium growth rates and transitional dynamics and
also discuss further topics such as the properties of factor prices, the Golden Rule of capital
accumulation and growth accounting.

1Note that some of these facts have evolved in recent years, in particular the stability of income shares.
Furthermore, additional facts can be included. See the excellent chapter of Jones (2005) in the Handbook
of Economic Growth.
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5.2 A general property: the balanced-growth path

Before starting with the presentation of the Solow model, we derive an important and useful
property of any one-sector growth model provided it includes capital accumulation. This
property, called the balanced growth path (or BGP), focuses on the equilibrium growth rates
of aggregate quantities. We consider a simple economy characterized (for the moment) by two
equations:

𝐾𝑡+1 = 𝐼𝑡 + (1 − 𝛿)𝐾𝑡 (5.1)

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 (5.2)

Equation (5.1) represents the capital accumulation equation2 while Equation (5.2) is the ag-
gregate resource constraint of the economy. Variables 𝐾𝑡, 𝐼𝑡, 𝐶𝑡 and 𝑌𝑡 the aggregate stock
of capital installed at date 𝑡 and investment realized at date 𝑡, aggregate consumption at date
𝑡 and GDP at date 𝑡 respectively. The parameter 𝛿 ∈ (0, 1) represents depreciation of the
capital stock at each period.

Definition 5.1. A balanced-growth path is a path {𝑌𝑡, 𝐶𝑡, 𝐼𝑡, 𝐾𝑡}𝑡≥0 along which the quan-
tities 𝑌𝑡, 𝐾𝑡, and 𝐶𝑡 are positive and growth at constant rates, which we denotes 𝑔𝑌 , 𝑔𝐾 and
𝑔𝐶 respectively.

We can show then:

Proposition 5.1. Let {𝑌𝑡, 𝐶𝑡, 𝐼𝑡, 𝐾𝑡}𝑡≥0 be a balanced-growth path. Then, given the capital
accumulation equation and the aggregate resource constraint, the following holds:

1. If there is a BGP, then 𝑔𝑌 = 𝑔𝐾 = 𝑔𝐶 = 𝑔𝐼 and the ratios 𝐾/𝑌 , 𝐶/𝑌 and 𝐼/𝑌 are
constant.

2. if 𝐾/𝑌 and 𝐶/𝑌 are constant, then 𝑌 , 𝐾, 𝐶 and 𝐼 all grow at the same constant
rate, i.e. there is a balanced-growth path with the additional property that all aggregate
variables grow at the same growth rate.

2In continuous time, this equation writes: 𝐾̇(𝑡) = 𝐼(𝑡) − 𝛿𝐾(𝑡).
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Proof

For the first part of the proposition: by definition, 𝑔𝑌 , 𝑔𝐶, 𝑔𝐼 and 𝑔𝐾 are constant.
Rewriting Equation (5.1):

Δ𝐾𝑡+1
𝐾𝑡

= 𝑔𝐾 = 𝐼𝑡
𝐾𝑡

− 𝛿 ⇔ 𝐼𝑡
𝐾𝑡

= 𝑔𝐾 + 𝛿

Since the right-hand side of this equation is constant, then the ratio 𝐼𝑡/𝐾𝑡 is constant
and therefore 𝐼𝑡 and 𝐾𝑡 have the same growth rate (𝑔𝐾 = 𝑔𝐼). We can focus on the
aggregate resource constraint:

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 ⇒ Δ𝑌𝑡 = Δ𝐶𝑡 + Δ𝐼𝑡 ⇒ 𝑔𝑌 = Δ𝑌𝑡
𝑌𝑡

= 𝐶𝑡
𝑌𝑡

𝑔𝐶 + 𝐼𝑡
𝑌𝑡

𝑔𝐼

Since 𝐼𝑡
𝑌𝑡

= 1 − 𝐶𝑡
𝑌𝑡

and 𝑔𝐼 = 𝑔𝐾, this equation becomes:

𝑔𝑌 = 𝐶𝑡
𝑌𝑡

(𝑔𝐶 − 𝑔𝐾) + 𝑔𝐾

There are two possibilities: either 𝑔𝐶 = 𝑔𝐾, from which we directly derive that
𝑔𝑌 = 𝑔𝐾 = 𝑔𝐶 = 𝑔𝐼 or 𝑔𝐾 ≠ 𝑔𝐶 and the last equation rewrites:

𝐶𝑡
𝑌𝑡

= 𝑔𝑌 − 𝑔𝐾
𝑔𝐶 − 𝑔𝐾

The right-hand side is constant, meaning that the ratio of 𝐶𝑡 over 𝑌𝑡 is also constant,
and therefore they grow at the same rate. Then, the RHS is equal to unity and
therefore 𝐶𝑡 = 𝑌𝑡 which contradicts the fact 𝐼𝑡 > 0. Hence, 𝑔𝐶 ≠ 𝑔𝐾 is not possible
according to the definition of a BGP and implies that 𝑔𝐶 = 𝑔𝐾 = 𝑔𝑌 = 𝑔𝐼 .
To prove the second part of the proposition: Assume 𝐾/𝑌 and 𝐶/𝑌 are constant.
Then, by definition, 𝑔𝑌 = 𝑔𝐾 = 𝑔𝐶 and therefore 𝐼𝑡

𝑌𝑡
= 1 − 𝐶𝑡

𝑌𝑡
meaning 𝑔𝐼 = 𝑔𝐾. To

show that the growth rate is constant, we use Equation (5.1):

𝑔𝑘 = 𝐼𝑡
𝐾𝑡

− 𝛿

where the right-hand side is constant.

This is a quite important result as it implies that there can’t be persistent deviations of
aggregate quantities growth rate. Furthermore, this not only gives us a starting point to
link theoretical quantities with observable but also regularities to reproduce or not given the
structure we give to the model.
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5.3 Assumptions

On the demand side, we consider that households are identical and follow a linear keynesian
consumption function. In particular, we assume the aggregate consumption is 𝐶𝑡 = (1 − 𝑠)𝑌𝑡
with the parameter 𝑠 ∈ (0, 1), the marginal propension to save. It follows that aggregate
savings is given by: 𝑆𝑡 = 𝑠𝑌𝑡. We also assume that households supply a fixed amount of
labor.

Population 𝑁𝑡 grows at a given and fixed rate 𝑛 (so that labor supply continuously grows).
The good 𝑌 can be either consumed or transformed into capital stock through investment. The
production function 𝑌𝑡 = 𝐹(𝐾𝑡, 𝐴𝑡𝐿𝑡) is homogeneous of degree 1 (i.e. linear homogeneity),
satisfies Inada conditions, is increasing and concave in its arguments. 𝐿𝑡 is labor used to
produced 𝑌𝑡 while 𝐴𝑡 represents exogenous technical progress and grows at an exogenous rate
𝑔.3 Without loss of generality,[^we could indeed provide a full, but more complex, analysis
just using the property given above.] we can assume a Cobb-Douglas production function
𝑌𝑡 = 𝐾𝛼

𝑡 (𝐴𝑡𝐿𝑡)1−𝛼 where 𝛼 ∈ (0, 1) is the output elasticity of capital (i.e. the percentage
increase in output after a one-percent change in capital stock). Because of linear homogeneity,
𝛼 is also the capital income share (or the percentage capital income earned in the production
process).

Important

Altough 𝐴𝑡 is called “technical (or technological) progress”, keep in mind that this is a
catch-up variable and does not capture only the technological level of a country. Indeed,
a more agnostic interpretation would also include political stability, quality of institutions
such as laws, patents and so on.

The economy is competitive (there is no market power or externalities). The model focus on
a closed economy (no exporations or importations). There is no government intervention and
the economy is at full employment such that 𝐿𝑡 = 𝑁𝑡. These assumptions are inoffensive to
the main conclusions we’ll get thereafter.

5.4 Solving the model

The good market implies that 𝑆𝑡 = 𝐼𝑡 at each date. Hence, we may write:

𝐾𝑡+1 = 𝑠𝑌𝑡 + (1 − 𝛿)𝐾𝑡 (5.3)

3Introducing technical progress as we did is called “Harrod-neutral”. The two other for of technological progress
are “Hick-Neutral” (𝑌𝑡 = 𝐴𝑡𝐹(𝐾𝑡, 𝐿𝑡)) and “Solow-Neutral” (𝑌𝑡 = 𝐹(𝐴𝑡𝐾𝑡, 𝐿𝑡)) but are not compatible
with balanced-growth.
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Since 𝐶𝑡 = 𝑌𝑡 − 𝐼𝑡 = (1 − 𝑠)𝑌𝑡 and 𝑌𝑡 = 𝐹(𝐾𝑡, 𝐴𝑡𝐿𝑡) with 𝐴𝑡 and 𝐿𝑡 evolving exogenously,
it is enough to use Equation (5.3) to describe the whole trajectory of the economy, although
we cannot provide a solution of this equation. To do so, we need to rewrite ([-#eq-aggregate-
equilibrium]) in effective labor unit. Denote GDP in effective labor ̃𝑦𝑡 = 𝑌𝑡

𝐴𝑡𝐿𝑡
and effective

labor capital stock 𝑘̃𝑡 = 𝐾𝑡
𝐴𝑡𝐿𝑡

, then we can derive:

𝐾𝑡+1
𝐴𝑡𝐿𝑡

= 𝑠𝑌𝑡 + (1 − 𝛿)𝐾𝑡
𝐴𝑡𝐿𝑡

= 𝑠 ̃𝑦𝑡 + (1 − 𝛿)𝑘̃𝑡

Using the assumption on the evolution of population and technical progress (e.g. 𝐿𝑡+1 =
(1 + 𝑛)𝐿𝑡 and 𝐴𝑡+1 = (1 + 𝑔)𝐴𝑡):

𝐴𝑡+1𝐿𝑡+1
𝐴𝑡𝐿𝑡

𝐾𝑡+1
𝐴𝑡+1𝐿𝑡+1

= (1 + 𝑛)(1 + 𝑔)𝑘̃𝑡+1 = 𝑠 ̃𝑦𝑡 + (1 − 𝛿)𝑘̃𝑡

To get rid of ̃𝑦𝑡, we use the production function:

𝑌𝑡
𝐴𝑡𝐿𝑡

= ̃𝑦𝑡 = 𝐾𝛼
𝑡 (𝐴𝑡𝐿𝑡)1−𝛼

𝐴𝑡𝐿𝑡
= ( 𝐾𝑡

𝐴𝑡𝐿𝑡
)

𝛼
(𝐴𝑡𝐿𝑡

𝐴𝑡𝐿𝑡
)

1−𝛼
= 𝑘̃𝛼

𝑡

The evolution of the capital stock in terms of effective labor is then:

(1 + 𝑛)(1 + 𝑔)𝑘̃𝑡+1 = 𝑠𝑘̃𝛼
𝑡 + (1 − 𝛿)𝑘̃𝑡 (5.4)

Equation (5.4) is the “fundemental Solow equation”, which is a non-linear first-order difference
equation in 𝑘̃𝑡. It displays two difference forces in the evolution of this variable. On the first
hand, capital stock in terms of effective labor increases as households save (and therefore invest)
more, that is the higher 𝑠𝑘̃𝛼

𝑡 . On the other hand, at each period, the capital stock in terms
of effective labor depletes because of physical depreciation (effect of 𝛿) but also because there
are more people (𝐿𝑡 increasing at rate 𝑛) and that workers are more efficient (𝐴𝑡 increasing
at rate 𝑔). 4 To say it differently, as there are more productive 𝐾𝑡+1

𝐴𝑡+1𝐿𝑡+1
decreases. Hence, the

economy requires to invest more to keep 𝑘̃𝑡+1 higher.

We derive the steady state by putting 𝑘̃𝑡+1 = 𝑘̃𝑡 = 𝑘̃∗ and solving Equation (5.4):5

4This can be seen as the RHS can be divided by (1 + 𝑛)(1 + 𝑔).
5Note that when developing (1 + 𝑛)(1 + 𝑔), we considered that 𝑛𝑔 ≈ 0 because both are close to 0 enough.
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(1 + 𝑛)(1 + 𝑔)𝑘̃∗ = 𝑠 (𝑘̃∗)
𝛼

+ (1 − 𝛿)𝑘̃∗

⇒ (𝛿 + 𝑛 + 𝑔 + 𝑛𝑔)𝑘̃∗ = 𝑠 (𝑘̃∗)
𝛼

⇒ 𝑘̃∗ = ( 𝑠
𝛿 + 𝑛 + 𝑔)

1
1−𝛼
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k

Note that the steady state stock of capital in terms of effective labor is increasing with respect
to the marginal propension to save 𝑠 and is decreasing with respect to the depreciation rate,
the population growth rate 𝑛 and the technical progress growth rate 𝑔. The remaining steady
state variable of interest are:

̃𝑦∗ = (𝑘̃∗)
𝛼

= ( 𝑠
𝛿 + 𝑛 + 𝑔)

𝛼
1−𝛼

, ̃𝑐∗ = (1 − 𝑠) (𝑘̃∗)
𝛼

= ( 𝑠
𝛿 + 𝑛 + 𝑔)

𝛼
1−𝛼

Note that taking first-order approximation of Equation (5.4) in the neighborhood of the steady
state implies that |𝑑𝑘̃𝑡+1

𝑑𝑘̃𝑡
| < 1 and provides stability.
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5.5 Growth rates

It is important to understand that by definition the growth rates of 𝑘̃𝑡, ̃𝑦𝑡 and ̃𝑐𝑡 are zero
when the economy reaches the steady state6. However, by definition of the variables in term
of effective labor, we have:

𝐾𝑡 = 𝐴𝑡𝐿𝑡𝑘̃𝑡, 𝑌𝑡 = 𝐴𝑡𝐿𝑡 ̃𝑦𝑡, 𝐶𝑡 = 𝐴𝑡𝐿𝑡 ̃𝑐𝑡

𝑘𝑡 = 𝐴𝑡𝑘̃𝑡, 𝑦𝑡 = 𝐴𝑡 ̃𝑦𝑡, 𝑐𝑡 = 𝐴𝑡 ̃𝑐𝑡

Where 𝑘𝑡, 𝑦𝑡 and 𝑐𝑡 are per capita capital stock, per capita GDP and per capita consumption.

Hence, as 𝑘̃ → 𝑘̃∗, aggregate variable 𝐾𝑡, 𝑌𝑡 and 𝐶𝑡 grow at rate 𝑛+𝑔 while per capita variables
𝑘𝑡, 𝑦𝑡 and 𝑐𝑡 grow at rate 𝑔. Indeed for the aggregate GDP:7

𝑙𝑛(𝑌𝑡+1) = 𝑙𝑛(𝐴𝑡+1) + 𝑙𝑛(𝐿𝑡+1) + 𝑙𝑛( ̃𝑦∗)
⇒ 𝑙𝑛(𝑌𝑡+1) − 𝑙𝑛(𝑌𝑡) ≡ 𝑙𝑛(1 + 𝑔𝑌 ) = 𝑙𝑛(𝐴𝑡+1) − 𝑙𝑛(𝐴𝑡) + 𝑙𝑛(𝐿𝑡+1) − 𝑙𝑛(𝐿𝑡)
⇒ 𝑔𝑦 = 𝑛 + 𝑔

Similarly for the GDP per capita:

𝑙𝑛(𝑦𝑡+1) − 𝑙𝑛(𝑦𝑡) = 𝑔

It is easily verified (and automatically satisfy by the properties of the BGP) that 𝐾𝑡 and 𝐶𝑡
also grow at rate 𝑛 + 𝑔 and 𝑘𝑡 and 𝑐𝑡 grow at rate 𝑔.

Now we can understand why the conclusions of Solow are important. As economists studying
growth, we are interested into growth in per capita quantities. Assuming away technical
progress (by putting 𝑔 = 0) implies that the per capita variable reach the steady state and
stop to grow, which is at odd with what is observed in the data. Another way to say it, growth
through an extensive process (increasing private inputs such as capital stock and labor, as hours
of work or number of people working) cannot be a source of persistent growth. This is a direct
consequence of marginal decreasing returns of capital: even in the favorable situation of linear
homogeneity of the production (e.g. doubling all inputs doubles output), GDP per capita has
decreasing returns in terms of stock of capital per capita meaning that any increase in 𝑘𝑡
makes GDP larger but less and less. To explain persistent growth, this requires an additional
variables which is exogenous in the model and takes the form of the catch-up variable 𝐴𝑡, the
so-called technological progress.

6This can be seen by dividing Equation (5.4) by 𝑘̃𝑡 on both sides and noting that 𝑘̃𝑡+1
𝑘̃𝑡

= (1 + 𝑔𝑘̃).
7Note that for any variable 𝑥𝑡 that grows at variable 𝑔𝑥 such that 𝑥𝑡 = (1 + 𝑔𝑥)𝑥𝑡−1 ⇒ 𝑙𝑛(𝑥𝑡) − 𝑙𝑛(𝑥𝑡−1) =

𝑙𝑛(1 + 𝑔𝑥) ≈ 𝑔𝑥. We could also directly take the ratio 𝑌𝑡+1/𝑌𝑡 = 1 + 𝑔𝑌 = (1 + 𝑛)(1 + 𝑔) ≈ 1 + 𝑛 + 𝑔.
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5.6 Transitional dynamics

We can use Equation (5.4) to study growth rate outside of the steady state. Rewrite it such
that:

Δ𝑘̃𝑡+1 ≡ 𝑘̃t+1 − 𝑘̃t = 𝑠𝑘̃𝑡 + (1 − 𝛿)𝑘̃t − (1 + 𝑛 + 𝑔 + 𝑛𝑔)𝑘̃t
(1 + 𝑛)(1 + 𝑔)

=
𝑠𝑓 (𝑘̃t) − (𝛿 + 𝑛 + 𝑔 + 𝑛𝑔)𝑘̃t

(1 + 𝑛)(1 + 𝑔) ≃ 𝑠𝑘̃𝛼 − (𝛿 + 𝑛 + 𝑔)𝑘̃t

⇒ 𝑔𝑘̃ ≡ Δ𝑘̃t+1
𝑘̃t

≃ 𝑠𝑘̃𝛼−1
𝑡 − (𝛿 + 𝑛 + 𝑔)

0.0 0.2 0.4 0.6 0.8 1.0
g_{\tilde{k}}
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Since the first term on the right hand side is decreasing in 𝑘̃𝑡, for any 𝑘̃𝑡 < 𝑘̃∗, the growth rate
of 𝑘̃, 𝑔𝑘̃ is positive and decreases (and conversely for any 𝑘̃𝑡 > 𝑘̃∗).

5.7 Behavior of the interest rate and the wage rate

Let us look at the firms’ profit maximization problem:

𝜋 = max
𝐾(𝑡),𝐿(𝑡)

{𝐾(𝑡)𝛼 (𝐴(𝑡)𝐿(𝑡))1−𝛼 − 𝑤(𝑡)𝐿(𝑡) − (𝑟(𝑡) + 𝛿)𝐾(𝑡)
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whose first-order conditions are:

𝛼𝐾𝛼−1 (𝐴(𝑡)𝐿(𝑡))1−𝛼 = 𝛼 ( 𝐾(𝑡)
𝐴(𝑡)𝐿(𝑡))

𝛼−1
≡ 𝛼𝑘̃(𝑡)𝛼−1 = 𝑟(𝑡) + 𝛿

(1 − 𝛼)𝐾𝛼𝐴(𝑡)1−𝛼𝐿(𝑡)−𝛼 = (1 − 𝛼)𝐴(𝑡) ( 𝐾(𝑡)
𝐴(𝑡)𝐿(𝑡))

𝛼
≡ (1 − 𝛼)𝐴(𝑡)𝑘̃(𝑡)𝛼 = 𝑤(𝑡)

(5.5)

Equations in (7.1) show two different properties for factor prices. In particular, the interest
rate depends only on the effective capital stock while the wage rate depends on both effective
capital stock and (proportionaly) technical progress. As a result, when the economy reaches
the steady state, the interest rate becomes constant while the wage rate grows at the same
rate than the equilibrium growth rate of per capital GDP, capital stock and consumption.

5.8 The Golden Rule

We have seen that the steady state effective capital stock and consumption are given by:

𝑘∗ = ( 𝑠
𝛿 + 𝑛 + 𝑔)

1
1−𝛼

, 𝑐∗ = (1 − 𝑠) ( 𝑠
𝛿 + 𝑛 + 𝑔)

1
1−𝛼

For given parameters others than 𝑠, we can note that the saving rate as contradictory effect
on 𝑐∗: one the first hand, a decrease in 𝑠 increase the share of consumption given by (1 − 𝑠)
but it also reduces the effective capital stock at the steady state, and therefore the amount
produced. 8

The question is then: does it exist a saving rate that maximizes steady state consumption ?
Regarding the previous paragraph, the answer is a definitive “yes” as shown below. Define
𝑐(𝑠) = 𝑐∗(𝑠) and 𝑘(𝑠) = 𝑘∗(𝑠) (that is recognize that steady state consumption and capital
stock depends on the saving rate), then:

𝑐𝐺𝑅 ∶ max
𝑠

{𝑐(𝑠) = 𝑘(𝑠)𝛼 − (𝛿 + 𝑛 + 𝑔)𝑘(𝑠)}

which gives:

𝛼𝑘(𝑠)𝛼−1 𝜕𝑘(𝑠)
𝜕𝑠 = (𝛿 + 𝑛 + 𝑔)𝜕𝑘(𝑠)

𝜕𝑠 ⇒ 𝑘𝐺𝑅 = ( 𝛼
𝛿 + 𝑛 + 𝑔)

1
1−𝛼

8Note that this is independent of considering population growth or growth technical progress.
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the Golden rule states that maximum steady state of consumption is obtained if the marginal
product of capital is equal to the economic rate of depletion of capital stock 𝛿+𝑛+𝑔. 9 One can
show that the golden rule is generically not satisfied, unless 𝑠 = 𝛼. If 𝛼 < 𝑠 (respectively 𝑠 < 𝛼)
then, the economy over-accumulates capital stock (𝑘∗ > 𝑘𝐺𝑅) (respectively under-accumulate
capital stock, 𝑘∗ < 𝑘𝐺𝑅).

Satisfying or not the golden rule is important as it has consequences on future cohorts of
unborn yet people (and therefore intergenerational equity issues): too low savings means that
current living households should increase the rate at which they are saving and accumulating
capital while too high savings means we can at the same time increase consumption and
capital accumulation. While the former characterizes under-accumulation of capital , the
latter represents over-accumulation of capital. This can be summarized by the concept of
dynamic efficiency.

Definition 5.2. Dynamic efficiency is a situation where an economy under-accumulates capital
stock, that is 𝑘∗ < 𝑘𝐺𝑅 while a dynamic inefficient economy over-accumulates capital stock,
that is 𝑘∗ > 𝑘𝐺𝑅.

5.9 Growth Accounting

Having achieved the analysis, we can use the structure of the model to measure the contribu-
tions of each factor to growth of the GDP per capita.

From the production function 𝑌 = 𝐾𝛼(𝐴𝐿)1−𝛼, take logs and differentiate to get it in terms
of growth rates:

𝑔𝑌 = 𝛼𝑔𝐾 + (1 − 𝛼)(𝑛 + 𝑔)𝑔𝑌 − 𝑛 = 𝑔𝑦 = 𝛼(𝑔𝐾 − 𝑛) + (1 − 𝛼)𝑔
Note that we can easily find data describing growth rates of GDP per capita 𝑔𝑦, capital stock
𝑔𝐾 and demographic growth 𝑛. Furthermore, 𝛼 is the capital income share and is around
𝛼 = 0.3. Hence, we can solve this relationship for 𝑔 and plug in values:

𝑔 = 1
1 − 𝛼𝑔𝑦 − 𝛼

1 − 𝛼(𝑔𝐾 − 𝑛)

Once you obtain estimated values of 𝑔, let’s write ̂𝑔, then the contribution to growth of GDP
per capita can be computed:

𝑔𝑦 = 𝛼(𝑔𝐾 − 𝑛) + (1 − 𝛼) ̂𝑔

9In a more general setup, without specifying the production function 𝑓(𝑘), the golden rule is given by:
𝑓′(𝑘𝐺𝑅) = (𝛿 + 𝑛 + 𝑔)
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The first term on the RHS is the effect of capital stock per capita and contributes around one
third to the growth rate of GDP per capita while the second term is the effect of productivity
and contributes up to two-third of GDP per capita growth.

5.10 Appendix

5.10.1 Deriving the general production function for GDP per capita and effective
labor GDP

Consider the general production function 𝑌𝑡 = 𝐹(𝐾𝑡, 𝐴𝑡𝐿𝑡). Since it has homogeneity of
degree one, we can write:

𝑌𝑡 = 𝐹(𝐴𝑡𝐿𝑡𝑘̃, 𝐴𝑡𝐿𝑡) = 𝐴𝑡𝐿𝑡𝐹(𝑘̃𝑡, 1) = 𝐴𝑡𝐿𝑡𝑓(𝑘̃𝑡) ⇒ ̃𝑦𝑡 = 𝑓(𝑘̃𝑡)

With 𝑓 ′(𝑘̃𝑡) > 0 and 𝑓″(𝑘̃𝑡) < 0, that is the production function in intensive form is increasing
and concave.

Obviously, if we study per capita GDP, you get:

𝑌𝑡
𝐿𝑡

= 𝑦𝑡 = 𝑓(𝐾𝑡, 𝐴𝑡𝐿𝑡)
𝐿𝑡

= 𝑓(𝐾𝑡
𝐿𝑡

, 𝐴𝑡) = 𝑓(𝑘𝑡, 𝐴𝑡)

We can also derive useful expressions for the interest rate and the wage rate:

𝜋𝑡 = 𝐴𝑡𝐿𝑡𝑓(𝑘̃𝑡) − 𝑤𝑡𝐿𝑡 − 𝑟𝐾𝑡

Marginal productivity of capital equations the interest rate:

𝜕𝜋𝑡
𝜕𝐾𝑡

= 0 ⇒ 𝐴𝑡𝐿𝑡𝑓 ′(𝑘̃𝑡)
𝜕𝑘̃𝑡
𝜕𝐾𝑡

= 𝑟𝑡 ⇒ 𝐴𝑡𝐿𝑡𝑓 ′(𝑘̃𝑡)
1

𝐴𝑡𝐿𝑡
= 𝑟𝑡 ⇒ 𝑓 ′(𝑘̃𝑡) = 𝑟𝑡

Marginal productivity of labor equates the wage rate:

𝜕𝜋𝑡
𝜕𝐿𝑡

= 0 ⇒ 𝐴𝑡𝑓(𝑘̃𝑡) + 𝐴𝑡𝐿𝑡𝑓 ′(𝑘̃𝑡)
𝜕𝑘̃𝑡
𝜕𝐿𝑡

= 𝑤𝑡

⇒ 𝐴𝑡𝑓(𝑘̃𝑡) − 𝐴𝑡𝐿𝑡𝑓 ′(𝑘̃𝑡)
𝐾𝑡

𝐴𝑡𝐿2
𝑡

= 𝐴𝑡 (𝑓(𝑘̃𝑡) − 𝑓 ′(𝑘̃𝑡)
𝐾𝑡

𝐴𝑡𝐿𝑡
)

⇒ 𝐴𝑡(𝑓(𝑘̃𝑡) − 𝑘̃𝑡𝑓 ′(𝑘̃𝑡)) = 𝑤𝑡
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5.10.2 The model in continuous-time

The equation for aggregate capital accumulation is now:

𝐾̇(𝑡) = 𝐼(𝑡) − 𝛿𝐾(𝑡) (5.6)

Demographic changes and technological change are given by:10

𝐿̇(𝑡) = 𝑛𝐿(𝑡), ̇𝐴(𝑡) = 𝑔𝐴(𝑡)
and the production function is given by: 𝑌 (𝑡) = 𝐾(𝑡)𝛼 (𝐴(𝑡)𝐿(𝑡))1−𝛼.

Households save a fraction 𝑠 ∈ (0, 1) of their income.

Using the good market equilibrium condition 𝐼(𝑡) = 𝑆(𝑡) ⇒ 𝐼(𝑡) = 𝑠𝑌 (𝑡) into Equation (5.6),
we get:

𝐾̇(𝑡) = 𝑠𝑌 (𝑡) − 𝛿𝐾(𝑡) = 𝑠𝐾(𝑡)𝛼 (𝐴(𝑡)𝐿(𝑡))1−𝛼 − 𝛿𝐾(𝑡)
As in the discrete time version, we want to express the evolution of the capital stock in term
of effective labor ̇𝑘̃(𝑡):

̇𝑘̃(𝑡) =
̇

( 𝐾(𝑡)
𝐴(𝑡)𝐿(𝑡)) =𝐾̇(𝑡)𝐴(𝑡)𝐿(𝑡) − 𝐾(𝑡)( ̇𝐴(𝑡)𝐿(𝑡) + 𝐴(𝑡) ̇(𝐿)(𝑡))

(𝐴(𝑡)𝐿(𝑡))2

= 𝐾̇(𝑡)
𝐴(𝑡)𝐿(𝑡) − 𝐾(𝑡)

𝐴(𝑡)𝐿(𝑡) (
̇𝐴(𝑡)

𝐴(𝑡) + 𝐿̇(𝑡)
𝐿(𝑡))

= 𝐾̇(𝑡)
𝐴(𝑡)𝐿(𝑡) − (𝑛 + 𝑔) 𝑘̃(𝑡)

= 𝑠𝐾(𝑡)𝛼 (𝐴(𝑡)𝐿(𝑡))1−𝛼 − 𝛿𝐾(𝑡)
𝐴(𝑡)𝐿(𝑡) − (𝑛 + 𝑔) 𝑘̃(𝑡)

= 𝑠𝑘̃(𝑡)𝛼 − (𝛿 + 𝑛 + 𝑔)𝑘̃(𝑡)

The steady state is obtained by equation ̇𝑘̃(𝑡) = 0 and 𝑘̃(𝑡) = 𝑘̃∗ and gives:

𝑘̃∗ = ( 𝑠
𝛿 + 𝑛 + 𝑔)

1
1−𝛼

which is equivalent to the discrete time version of the model.

10The solution of this exogenous process are respectively 𝐿(𝑡) = 𝑒𝑛𝑡 and 𝐴(𝑡) = 𝑒𝑔𝑡.
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The GDP per capita and its growth rate are given by:

𝑦(𝑡) = 𝑘(𝑡)𝛼𝐴(𝑡)1−𝛼 ⇒ ̇𝑦(𝑡)
𝑦(𝑡) = 𝛼𝑘̇(𝑡)

𝑘(𝑡) + (1 − 𝛼)𝑔

which implies that 𝑔𝑦 = 𝑔𝑘 = 𝑔 using the BGP properties.
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6 The Ramsey-Cass-Koopmans Model

6.1 Introduction

The Solow model assumes exogenous and constant savings rate, when the savings are the
source of capital accumulation and are a decision variable for the savers (households). The
Ramsey model endogenizes consumption and savings decisions.

We will see that in the steady-state the saving rate in the Ramsey model is constant, similar
to Solow model. Therefore, basically we will simply re-examine the results of the Solow model,
while relaxing the assumption of exogeneity of the savings.

6.2 The Model

A large part of the model is similar to the Solow model, i.e. the production structure. The
new element is the many-periods horizon problem of the households. We are going to study
the infinite-horizon problem in continuous-time. 1

• Neoclassical production function: 𝑌 (𝑡) = 𝐹(𝐾(𝑡), 𝐴(𝑡)𝐿(𝑡)), where 𝐴(𝑡) is the labor
augmenting technology

• One-sector model of growth: both capital and consumption goods are produced with the
same technology

• A continuum of infinitely lived and identical households of mass 𝐿(𝑡)
• The representative household is endowed with a unit of labor and chooses its consumption

𝑐(𝑡), labor supply (and the evolution of assets ̇𝑏(𝑡) ) to maximize the lifetime utility 𝑈 ,
where:^[ Since the utility here should be perceived in cardinal sense, the households
maximizes simply its utility multiplied by the size of the representative households.}

𝑈 = ∫
∞

0
𝑢(𝑐(𝑡))𝐿(𝑡)𝑒−𝜌𝑡𝑑𝑡

1The discrete-time version of the model is found in Appendix. This is motivated by pedagogical reasons as we
have considered the discrete-time Solow model in the main body in the previous chapter.
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𝑢(𝑐(𝑡)) is the instantaneous utility from consumption of amount 𝑐(𝑡) of final good in percapita
terms. The instantaneous utility function is increasing and concave in 𝑐(𝑡) (i.e., 𝑢′ > 0, 𝑢′′ < 0
) and satisfies the Inada conditions (i.e., lim𝑐→0 𝑢′(𝑐) = ∞, lim𝑐→∞ 𝑢′(𝑐) = 0). The concavity
implies that households prefers to smooth consumption over time. The pure rate of time
preference is 𝜌 > 0. The budget constraint written in per capita terms of households is
̇𝑏(𝑡) = (𝑟(𝑡) − 𝑛)𝑏(𝑡) + 𝑤(𝑡) − 𝑐(𝑡)

We assume two exogenous evolution for population and technology: - Population grows at
exogenous rate 𝐿̇(𝑡)

𝐿(𝑡) = 𝑛, 𝐿(0) > 0 (taken as given) - Technology grows at exogenous rate
̇𝐴(𝑡)

𝐴(𝑡) = 𝑔𝐴, 𝐴(0) > 0 (taken as given)

6.3 Individual Problems and Market equilibrium

The firm side is similar to Solow model. Formally, setting the final goods as numeraire the
representative firm’s optimization problem is

max
𝐾(𝑡),𝐿(𝑡)

𝜋(𝑡) = 𝐹(𝐾(𝑡), 𝐴(𝑡)𝐿(𝑡)) − 𝑅(𝑡)𝐾(𝑡) − 𝑤(𝑡)𝐿(𝑡)

Therefore, the first order conditions (optimal rules) are

𝜕𝜋(𝑡)
𝜕𝐾(𝑡) = 0 ⇔ 𝐹𝐾 = 𝑅(𝑡)

𝜕𝜋(𝑡)
𝜕𝐿(𝑡) = 0 ⇔ 𝐹𝐿 = 𝑤(𝑡)

The representative households chooses consumption path to maximize its lifetime utility. Its
means of savings is accumulation of capital. Formally, the households’ problem is

max
𝑐

𝑈 = ∫
∞

0
𝑢(𝑐(𝑡))𝑒−(𝜌−𝑛)𝑡𝑑𝑡,

s.t.
̇𝑏(𝑡) = (𝑟(𝑡) − 𝑛)𝑏 + 𝑤(𝑡) − 𝑐(𝑡),

𝑏(0) given.

If written in terms of current value Hamiltonian the households’s problem is

67



max
𝑐(𝑡),𝑏(𝑡)

𝐻 = 𝑢(𝑐(𝑡)) + 𝜆(𝑡)[(𝑟(𝑡) − 𝑛)𝑏(𝑡) + 𝑤(𝑡) − 𝑐(𝑡)],

and
𝑏(0) given,

where the 𝜆(𝑡) is the shadow price of a unit of assets. Therefore, the optimal rules are

𝜕𝐻
𝜕𝑐(𝑡) = 0 ⇔ 𝑢′(𝑐(𝑡)) = 𝜆(𝑡)

𝜆̇(𝑡) = 𝜆(𝑡)(𝜌 − 𝑛) − 𝜕𝐻
𝜕𝑏(𝑡) = 𝜆(𝑡)(𝜌 − 𝑟(𝑡)),

lim
𝑡→∞

𝑏(𝑡)𝜆(𝑡)𝑒−(𝑟−𝑛)𝑡 = 0

From the first optimal rule it follows that

𝜆̇(𝑡) = ̇𝑐(𝑡)𝑢′′(𝑐(𝑡))

Therefore,

𝑟(𝑡) − 𝜌 = − ̇𝑞(𝑡)
𝑞(𝑡) = − ̇𝑐(𝑡)

𝑐(𝑡)
𝑐(𝑡)𝑢′′(𝑐(𝑡))

𝑢′(𝑐(𝑡))
or the optimal consumption path is

̇𝑐(𝑡)
𝑐(𝑡) = − 𝑢′(𝑐(𝑡))

𝑢′′(𝑐(𝑡))𝑐(𝑡)(𝑟 − 𝜌)

The transversality conditions states that the value of the current asset holdings in infinity is
zero. Formally, this is part of the open boundary problem given by the maximization of 𝐻.

Note that ̇𝑐(𝑡)
𝑐(𝑡) > 0 if 𝑟(𝑡) − 𝜌 > 0. The sensitivity of the growth of consumption to 𝑟(𝑡) − 𝜌 is

higher, the lower is − 𝑢′(𝑐(𝑡))
𝑢′′(𝑐(𝑡))𝑐(𝑡) , which is the intertemporal elasticity of substitution (or IES).

This elasticity is a measure of the responsiveness of consumption to changes in the marginal
utility, i.e., it measures the willingness to deviate from consumption smoothing. In a special
case of constant intertemporal elasticity of substitution (CIES) utility function

𝑢((𝑡)) = 𝑐(𝑡)1−𝜃 − 1
1 − 𝜃 , 𝜃 > 0

the growth rate of consumption is given by
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̇𝑐(𝑡)
𝑐(𝑡) = 1

𝜃(𝑟(𝑡) − 𝜌)

since

− 𝑢′(𝑐(𝑡))
𝑢′′(𝑐(𝑡))𝑐(𝑡) = −𝑐(𝑡)−𝜃−1 1

−𝜃𝑐(𝑡)−𝜃−1 = 1
𝜃

The parameter 𝜃 is thereforte the inverse of the intertemporal elasticity of substitution.

The CIES assumption is preserved in what follows.

The equilibrium in the asset market delivers again

𝑅(𝑡) = 𝑟(𝑡) + 𝛿
𝐵(𝑡) = 𝐾(𝑡)

This gives the law of motion for capital 𝐾̇(𝑡)(𝑡) = 𝑌 (𝑡)−𝐶(𝑡)−𝛿𝐾, given that 𝑌 = 𝐹(𝐾, 𝐴𝐿) =
𝑅(𝑡)𝐾(𝑡)+𝑤(𝑡)𝐿(𝑡). The last equation is implied by the homogeneity of degree one assumption
and states that the final good producer earns zero profit under perfect competition in final
good market.

Warning

Note that we could also have written the households’ problem where they would own the
capital stock. In such case, the interest paid by firms to households would be 𝑟(𝑡) and
the per capita households budget constraint is 𝑘̇(𝑡) = (𝑟(𝑡) − 𝑛 − 𝛿)𝑘(𝑡) + 𝑤(𝑡) − 𝑐(𝑡).
This leads to an equivalent results.

6.4 Balanced growth path

All variables of the model need to grow at constant rates (BGP). On a BGP ̇𝑐(𝑡)
𝑐(𝑡) ≡ 𝑔𝑐 is

constant. We have CIES utility function and 𝜌 is a constant parameter, therefore,

𝑔𝑐 = 1
𝜃(𝑟(𝑡) − 𝜌)

On the BGP, therefore the interest rate 𝑟 should be constant. In our setup, constant interest
rate then will imply that savings rate is constant. The intuition behind is that on the BGP
there should be no shifts in the shares of aggregates (notice that 𝐶 +𝑆 = 𝑌 ). Use the constant
returns to scale assumption and write
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𝑟 − 𝛿 = 𝜕𝐹(𝐾, 𝐴𝐿)
𝜕𝐾 = 𝜕𝐹 ( 𝐾

𝐴𝐿 , 1)
𝜕 𝐾

𝐴𝐿
= 𝑓 ′ ( 𝐾

𝐴𝐿)

Given that 𝑓 ′′ < 0 the ratio 𝐾
𝐴𝐿 should be constant on the BGP in order to have 𝑟 = const.

Similarly, given that the ratio 𝐾
𝐴𝐿 is constant from the constant returns to scale assumption

it follows that

𝑌
𝐾 = 𝐹 (1, 𝐴𝐿

𝐾 ) = const.

Given that 𝑌
𝐾 is constant on the balanced growth path from the law of motion of capital it

follows that the ratio 𝐶
𝐾 also should be constant,

𝐶
𝐾 = 𝑌

𝐾 − 𝛿 − 𝑔𝐾

Therefore, 𝑔𝐾 = 𝑔𝑌 = 𝑔𝐶. Moreover, from 𝑌
𝐾 = 𝐹 (1, 𝐴𝐿

𝐾 ) it follows that on the balanced
growth path 𝑔𝐾 = 𝑔𝑌 = 𝑔𝐶 = 𝑛 + 𝑔𝐴.

In order to derive the steady-state and to characterize the transition dynamics, redefine the
model in units of effective labour, i.e., 𝐴𝐿. Let ̃𝑦 ≡ 𝑌

𝐴𝐿 , 𝑘̃ ≡ 𝐾
𝐴𝐿 , and ̃𝑐 ≡ 𝐶

𝐴𝐿 . Also, for 𝑌 =
𝐴𝐿 × 𝐹 ( 𝐾

𝐴𝐿 , 1) ≡ 𝐴𝐿 × 𝑓(𝑘̃).

From these definitions it follows that 𝑅 = 𝐹𝐾 = 𝑓 ′(𝑘̃), 𝑤 = 𝐹𝐿 = 𝑓(𝑘̃) − 𝑓 ′(𝑘̃)𝑘̃. In the
steady-state 𝑔 ̃𝑦 = 𝑔𝑘̃ = 𝑔 ̃𝑐 = 0. The steady-state and the transition dynamics of the model can
be summarized by the following system of equations

̇̃𝑐(𝑡)
̃̃𝑐(𝑡)

= 1
𝜃 [𝑓 ′(𝑘̃(𝑡)) − 𝛿 − 𝜌 − 𝜃𝑔𝐴]

̇𝑘̃(𝑡)
𝑘̃(𝑡)

= 𝑓(𝑘̃(𝑡))
𝑘̃(𝑡)

− ̃𝑐(𝑡)
𝑘̃(𝑡)

− (𝛿 + 𝑛 + 𝑔𝐴)

𝑘̃(0) given
lim

𝑡→∞
𝑘̃(𝑡)𝜆(𝑡)𝑒−(𝑟−𝑛−𝑔𝐴)𝑡 = 0

(6.1)

The first equation follows from the optimal path of consumption given that

̇̃𝑐(𝑡)
̃𝑐(𝑡) = ̇𝑐(𝑡)

𝑐(𝑡) − 𝑔𝐴

and
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𝑟 = 𝑓 ′(𝑘̃(𝑡)) − 𝛿

The second equation follows from the law of motion of capital given that

̇𝑘̃(𝑡)
𝑘̃(𝑡)

= 𝑘̇(𝑡)
𝑘(𝑡) − 𝑔𝐴 = 𝐾̇(𝑡)

𝐾(𝑡) − (𝑛 + 𝑔𝐴)

In the steady-state
̇̃𝑘̃(𝑡)
̃𝑘̃(𝑡)

= ̇̃𝑐(𝑡)
̃𝑐(𝑡) = 0, such that we can solve for the steady-state values of ̃𝑐 and

𝑘̃ from (7.2). Let 𝐹(𝐾(𝑡), 𝐴(𝑡)𝐿(𝑡)) = 𝐾(𝑡)𝛼(𝐴(𝑡)𝐿(𝑡))1−𝛼 and denote any stationary variable
𝑥 by 𝑥∗:

𝑓 ′ (𝑘̃∗) = 𝛿 + 𝜌 + 𝜃𝑔𝐴

⇒𝑘̃∗ = ( 𝛼
𝛿 + 𝜌 + 𝜃𝑔𝐴

)
1

1−𝛼

⇒ 𝑓 (𝑘̃∗) = ( 𝛼
𝛿 + 𝜌 + 𝜃𝑔𝐴

)
𝛼

1−𝛼

,

̃𝑐∗ = 𝑓 (𝑘̃∗) − (𝛿 + 𝑛 + 𝑔𝐴) 𝑘̃∗

⇒ ̃𝑐∗ = ( 𝛼
𝛿 + 𝜌 + 𝜃𝑔𝐴

)
𝛼

1−𝛼

[1 − 𝛼 (𝛿 + 𝑛 + 𝑔𝐴)
𝛿 + 𝜌 + 𝜃𝑔𝐴

] .

(6.2)

The transition dynamics of the model in ( ̃𝑐, 𝑘̃) space is characterized by the Jacobian of the
system of equations (7.2) evaluated in the neighborhood of the steady-state

𝐽 = ⎛⎜⎜
⎝

𝜕( ̇̃𝑐
̃𝑐 )

𝜕 ̃̃𝑐
𝜕( ̇̃𝑐

̃𝑐 )

𝜕 ̃𝑘̃
𝜕

̃̃𝐸̃
𝜕 ̃𝑐

𝜕 ̃̃̃𝑐
𝜕𝑘̃

⎞⎟⎟
⎠

= ( 0 1
𝜃𝑓 ′′(𝑘̃)

−1 𝑓 ′(𝑘̃) − (𝛿 + 𝑛 + 𝑔𝐴) ) .

Notice that det 𝐽 < 0. Since det 𝐽 = 𝜇1 ∗ 𝜇2, where 𝜇1,2 are the eigenvalues of the matrix 𝐽 ,
we have that 𝜇1 and 𝜇2 have different signs. This means that we have saddle path with one
stable arm and one unstable arm. The stable arm corresponds to negative eigenvalue, while
the unstable arm corresponds to the positive eigenvalue.

The phase diagram of the system is as follows. 2.

The stable arm is the path converging to the steady state (located on the south-west and the
north-east quadrant).

2See Appendix 6.7.1 for more details to build the phase diagram
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Figure 6.1: Phase Diagram of the Ramsey Model

6.5 The Golden rule

Note that just as in the Solow model, the golden rule is defined by the maximum consumption
level in steady state,i.e. the maximum of the curve in Figure 6.1, that is:

̃𝑐𝐺𝑅 ∶ max
𝑘̃

̃𝑐 = 𝑓(𝑘̃) − (𝛿 + 𝑛 + 𝑔𝐴)𝑘̃ ⇒ 𝑓 ′(𝑘̃𝐺𝑅) = 𝛿 + 𝑛 + 𝑔𝐴

This has to be compared with respect to the steady state in equations (6.2):

𝑓 ′(𝑘̃∗) = 𝛿 + 𝜌 + 𝜃𝑔𝐴

Hence, remembering that 𝑓 ′(𝑘̃) is decreasing in 𝑘̃, the steady state is dynamically efficient (on
the left-hand side of the maximum level of 𝑘𝐺𝑅 in Figure 6.1) if 𝛿 +𝜌+𝜃𝑔𝐴 > 𝛿 +𝑛+𝑔𝐴 ⇒ 𝜌 >
𝑛 + (1 − 𝜃)𝑔𝐴. Note that given the transversality condition and firms’ FOC 𝑟 = 𝑓 ′(𝑘) − 𝛿, we
see that the economy is indeed dynamically efficient as soon as the transversality condition is
satisfied (i.e 𝜌 > 𝑛+𝜃𝑔𝐴). This is in contrast to the Solow model that admits the possibility of a
dynamically inefficient economy. The reason of such differences is that households’ here behave
optimally over all generations including therefore not yet born individuals. Note however that
due to a positive rate of time preference 𝜌 > 0, the golden rule can not be reached (individuals
take into account future generations but also favor present consumption). We label therefore
the steady state condition for capital as the modified Golden rule.
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Important

It is important to precise that although the economy never satisfies the golden rule of
capital accumulation, this is not necessarily a problem as this is the optimal behaviour
given a welfare criterion, even as new generations arrive continuously and no one dies
(see next chapter in the case of finite a lifetime case). In contrast, dynamic efficiency was
the only criterion to evaluate an economy in the Solow model but it was not based on a
welfare criterion.

6.6 The Social Planner Problem

In the previous section, we were studying the decentralized problem, that is when households
and firms make choices on their respective side and meet on the different market where prices
adjust to ensure equilibrium. In this section, we consider the problem of a planner that take
decisions for all agents (without any price mechanisms). We will show that in absence of any
distortion in the decentralized case, the two problems are equivalent. The main interest for
this exercise is to compare the first-best optimal allocations with respect to a decentralized
(potentially distorted) outcome.

A planner have the same preferences as an individual household and firm’s technology. It has to
choose the path of per capita consumption 𝑐(𝑡) and effective capital stock 𝑘̃(𝑡) to maximize:

max
𝑐(𝑡),𝑘̃(𝑡)

∫
∞

𝑡=0
𝑢(𝑐) exp−(𝜌−𝑛)𝑡 𝑑𝑡

s.t. ̇𝑘̃(𝑡) = 𝑓(𝑘̃(𝑡)) − (𝛿 + 𝑛 + 𝑔𝐴)𝑘̃(𝑡) − 𝑐(𝑡)𝑒𝑥𝑝−𝑔𝐴𝑡

𝑘̃(0) given
where the constraint is the aggregate resource constraint of the economy written in term of
effective labor.

Denote 𝜆 as the multiplier of the constraint of the current-value Hamiltonian, the FOCs are:

𝑢′(𝑐(𝑡)) = 𝜆(𝑡) exp −𝑔𝐴𝑡
(𝜌 − 𝑛)𝜆(𝑡) − 𝜆̇(𝑡) = 𝜆(𝑡)(𝑓 ′(𝑘̃(𝑡)) − (𝛿 + 𝑛 + 𝑔𝐴))

⇒ −𝜆̇(𝑡) = 𝜆(𝑡)(𝑓 ′(𝑘̃(𝑡)) − (𝜌 + 𝛿 + 𝑔𝐴))
lim

𝑡→+∞
𝑘̃(𝑡)𝜆(𝑡) exp −(𝜌 − 𝑛)𝑡 = 0

Log-differentiate the first equation with respect to time to obtain − 𝑐(𝑡)𝑢″(𝑐(𝑡))
𝑢′(𝑐(𝑡))

̇𝑐(𝑡)
𝑐(𝑡) = 𝑔𝐴 − 𝜆̇(𝑡)

𝜆(𝑡)
and substitute the growth rate of 𝜆(𝑡) by the second Foc:
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−𝑐(𝑡)𝑢″(𝑐(𝑡))
𝑢′(𝑐(𝑡))

̇𝑐(𝑡)
𝑐(𝑡) = 𝑔𝐴 + (𝑓 ′(𝑘̃(𝑡)) − (𝜌 + 𝛿 + 𝑔𝐴))

After eliminating the terms in 𝑔𝐴, we note that we obtained the same FOC in the decentralized
problem, hence the equivalence (in absence of distortion) of the two problems.

6.7 Appendix

6.7.1 Phase diagram

Consider the dynamic system we obtained:

̇̃𝑐(𝑡)
̃̃𝑐(𝑡)

= 1
𝜃 [𝑓 ′(𝑘̃(𝑡)) − 𝛿 − 𝜌 − 𝜃𝑔𝐴]

̇𝑘̃(𝑡)
𝑘̃(𝑡)

= 𝑓(𝑘̃(𝑡))
𝑘̃(𝑡)

− ̃𝑐(𝑡)
𝑘̃(𝑡)

− (𝛿 + 𝑛 + 𝑔𝐴)

Consider first the Euler equation. It is easy to show that:

̇̂𝑐 > 0 ⇔ 𝑓 ′(𝑘̃) > 𝛿 + 𝜌 + 𝜃𝑔𝐴 ⇔ 𝑘̃ < 𝑘̃∗

̇̂𝑐 > 0 ⇔ 𝑓 ′(𝑘̃) < 𝛿 + 𝜌 + 𝜃𝑔𝐴 ⇔ 𝑘̃ > 𝑘̃∗

Where the last implications are obtained because 𝑓″(𝑘̃) < 0. It follows that on the left
(respectively right) of the locus defining ̇̃𝑐 = 0, that is where 𝑘̃ < 𝑘̃∗ (respectively 𝑘̃ > 𝑘̃∗),
consumption is increasing (respectively decreasing) such that:

Consider now the capital accumulation equation. We get:

̇𝑘̂ > 0 ⇔ ̃𝑐 < 𝑓(𝑘̃) − (𝛿 + 𝑛 + 𝑔𝐴)𝑘̃ ⇔ 𝑘̃ < 𝑘̃∗

̇𝑘̂ > 0 ⇔ ̃𝑐 > 𝑓(𝑘̃) − 𝛿 + 𝜌 + 𝑔𝐴)𝑘̃ ⇔ 𝑘̃ > 𝑘̃∗

That is for every value of ̃𝑐 above (respectively below) the curve, 𝑘̃(𝑡) decreases (respectively
increases) such that:

Combining the vectors of each case we just defined gives Figure 6.1.
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6.7.2 The discrete-time Ramsey Model

We keep the same assumptions and structure as in the continuous-time model.

The housolds discounted utility function is:

+∞
∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

with 𝛽 ∈ (0, 1) the discount factor. Population 𝑁 growing such that 𝑁𝑡 = (1 + 𝑛)𝑡𝑁0. The
household budget constraint per capita and in terms of effective labor are respectively:^{
Note here we assume that households own the capital and lend it to the firms without loss of
generality.}

(1 + 𝑛)𝑘𝑡+1 = 𝑟𝑡𝑘𝑡 + 𝑤𝑡 + (1 − 𝛿)𝑘𝑡 − 𝑐𝑡

→ (1 + 𝑔)(1 + 𝑛)𝑘̃𝑡+1 = 𝑟𝑡𝑘̃𝑡 + 𝑤𝑡/𝐴𝑡 + (1 − 𝛿)𝑘̃𝑡 − 𝑐𝑡/𝐴𝑡

with 𝑘0 given.

The problem of households is to maximize, by choosing the sequence {𝑐𝑡, 𝑘𝑡+1}, their lifetime
discounted utility subject to the per capita budget constraint. The Lagrangian is:

ℒ =
+∞
∑
𝑡=0

𝛽𝑡 {𝑢(𝑐𝑡) + 𝜆𝑡 [𝑤𝑡 + 𝑟𝑡𝑘𝑡 + (1 − 𝛿)𝑘𝑡 − 𝑐𝑡 − (1 + 𝑛)𝑘𝑡+1]}

The FOCs are:

𝜕ℒ
𝜕𝑐𝑡

= 0 ∶ 𝑢′(𝑐𝑡) = 𝜆𝑡

𝜕ℒ
𝜕𝑘𝑡+1

= 0 ∶ 𝜆𝑡(1 + 𝑛) = 𝛽𝜆𝑡+1(𝑟𝑡+1 + (1 − 𝛿))

lim
𝑡→+∞

𝑘𝑡𝜆𝑡
𝛽 = 0

Using the first equation into the second, we obtain the discrete-time Euler equation:

𝑢′(𝑐𝑡)
𝑢′(𝑐𝑡+1) = 𝛽 (𝑟𝑡+1 + (1 − 𝛿))

1 + 𝑛 (6.3)

If we assumed a CIES formulation for the utility function 𝑢(𝑐𝑡) = 𝑐1−𝜃
𝑡

1−𝜃 , we’d get:
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(𝑐𝑡+1
𝑐𝑡

)
𝜃

= 𝛽 (𝑟𝑡+1 + (1 − 𝛿))
1 + 𝑛 (6.4)

Just as in the continuous time case, the firm maximizes its profit by demanding optimal amount
of capital 𝐾𝑡 and labor 𝐿𝑡. The production technology has labor-augmenting technological
progress 𝐴𝑡 = (1 + 𝑔)𝑡𝐴0.

Hence:

𝑟𝑡 = 𝑓 ′(𝑘̃𝑡)
𝑤𝑡 = 𝑓(𝑘̃𝑡) − 𝑘̃𝑡𝑓 ′(𝑘̃𝑡)

(6.5)

In equilibrium, households and firms face the same wage rate and the same interest rate. Using
(6.5) into (6.4) and the budget constraint written in terms of effective labor, and transforming
consumption per capita in the (6.4) into consumption in terms of effective labor, we obtain
the discrete-time dynamic system of the Ramsey model:

( ̃𝑐𝑡+1
̃𝑐𝑡

)
𝜃

=
𝛽 (𝑓 ′(𝑘̃𝑡+1) + (1 − 𝛿))

(1 + 𝑛)(1 + 𝑔)𝜃

(1 + 𝑔)(1 + 𝑛)𝑘̃𝑡+1 = 𝑓(𝑘̃𝑡) + (1 − 𝛿)𝑘̃𝑡 − ̃𝑐𝑡

(6.6)

In steady state, 𝑘𝑡+1 = 𝑘𝑡 = 𝑘∗ and 𝑐𝑡+1 = 𝑐𝑡 = 𝑐∗ and thus:3

𝑓 ′(𝑘̃∗) = (1 + 𝑛)(1 + 𝑔)𝜃

𝛽 − (1 − 𝛿)

̃𝑐∗ = 𝑓(𝑘̃∗) − (𝑛 + 𝑔 + 𝛿)𝑘∗

Given 𝑓 ′(𝑘̃∗) is decreasing, this defines a unique capital stock in the first equation. Given this,
the steady consumption is obtained with the second equation. To characterize the BGP, we
note that for any variable 𝑥𝑡 ⇒ 𝑥𝑡+1

𝑥𝑡
= 1 + 𝑔𝑥. Then, rewrite the Euler equation such that:

(1 + 𝑔𝑐)𝜃 =
𝛽 (𝑓 ′(𝑘̃𝑡+1) + (1 − 𝛿))

(1 + 𝑛)(1 + 𝑔)𝜃

As 𝑔𝑐 is constant along a BGP, so is 𝑘̃ = 𝐾𝑡
𝐴𝑡𝐿𝑡

and therefore 𝑌
𝐴𝐿 = ̃𝑦 = 𝑓(𝑘̃) is also constant,

i.e. ̃𝑦𝑘̃ = 𝑓(𝑘̃)/𝑘̃ is constant and therefore 𝑔𝑘 = 𝑔𝑦. Using the budget constraint:

(1 + 𝑛)(1 + 𝑔)(1 + 𝑔𝑘) = 𝑓(𝑘̃)
𝑘̃

+ (1 − 𝛿) − ̃𝑐
𝑘

3We omitted the term 𝑛𝑔 associated wiht 𝑘𝑡+1 in the budget constraint
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As both 𝑔𝑘 and 𝑓(𝑘̃)/𝑘̃ are constant, the ratio ̃𝑐
𝑘̃ is also constant implying 𝑔𝑐 = 𝑔𝑘 = 𝑔𝑦. As a

result, aggregate variables 𝐶, 𝐾, 𝑌 grows at rate 𝑛 + 𝑔 while per capita variable 𝑐, 𝑘, 𝑦 grows
at rate 𝑔.

We study the transitional dynamics by linearizing the system (6.6) in the neighborhood of the
steady state. Totally differentiate the system:4

𝜃𝑑 ̃𝑐𝑡+1
̃𝑐 − 𝜃𝑑 ̃𝑐𝑡

̃𝑐 =
𝑓″(𝑘̃∗)𝑘̃∗ 𝑑𝑘̃𝑡+1

𝑘̃∗

𝑓 ′(𝑘̃∗) + (1 − 𝛿)
=

𝛽𝑓″(𝑘̃∗)𝑘̃∗ 𝑑𝑘̃𝑡+1
𝑘̃∗

(1 + 𝑛)(1 + 𝑔)𝜃

(1 + 𝑛)(1 + 𝑔)𝑑𝑘̃𝑡+1
𝑘̃∗

= (𝑓 ′(𝑘̃∗) + (1 − 𝛿))⏟⏟⏟⏟⏟⏟⏟⏟⏟
=(1+𝑛)(1+𝑔)𝜃/𝛽

𝑑𝑘̃𝑡
𝑘̃∗

− ̃𝑐∗

𝑘̃∗
𝑑 ̃𝑐𝑡
𝑐∗

Or in matrix form:

( 𝜃 − 𝛽𝑓″(𝑘̃∗)
(1+𝑛)(1+𝑔)𝜃

0 (1 + 𝑛)(1 + 𝑔)
) (

𝑑 ̃𝑐𝑡+1
̃𝑐∗

𝑑𝑘̃𝑡+1
𝑘̃∗

) = ( 𝜃 0
− ̃𝑐∗

𝑘̃∗ (1 + 𝑛)(1 + 𝑔)𝜃/𝛽 ) (
𝑑 ̃𝑐𝑡+1

̃𝑐∗
𝑑𝑘̃𝑡+1

𝑘̃∗

) (
𝑑 ̃𝑐𝑡+1

̃𝑐∗
𝑑𝑘̃𝑡+1

𝑘̃∗

)

Inverting the matrix on the left-hand side, we obtain the Jacobian matrix. We can show that
the Jacobian matrix has a single eigenvalue within the unit circle, which means that we have
a saddle-path.

6.7.3 An alternative resolution: using ratios

In this section, we propose an other approach to characterize the balanced-growth path of
the Ramsey model. The strategy relies on rewriting the system in terms of growth rates and
ratios that are constantalong the BGP which allows to rewrite the dynamics in a linear form.
Assume a Cobb-Douglas technology 𝑌 = 𝐾𝛼 (𝐴𝐿)(1−𝛼). Typically, the equilibrium path in
per capita terms can be described by:5

̇𝑐(𝑡)
𝑐(𝑡) ≡ 𝑔𝑐 = 1

𝜃 (𝛼𝑦
𝑘 − 𝛿 − 𝜌)

𝑘̇(𝑡)
𝑘(𝑡) ≡ 𝑔𝑘 = 𝑦(𝑡)

𝑘(𝑡) − 𝑐(𝑡)
𝑘(𝑡) − (𝛿 + 𝑛)

𝑦(𝑡) = 𝑘𝛼𝐴(𝑡)1−𝛼 ⇒ 𝑔𝑦 = 𝛼𝑔𝑘 + (1 − 𝛼)𝑔𝐴

4In our case, we are going to log-differentiate as it is easier to write the system in terms of 𝑑𝑥𝑡+1
𝑥 with 𝑥𝑡 = ̃𝑐𝑡, 𝑘̃𝑡

and 𝑑𝑥𝑡+1 = 𝑥𝑡+1 − 𝑥𝑡.
5We study this approach under a continuous time formulation. Identical steps can be undertaken in a discrete

time framework.
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and define 𝑧(𝑡) = 𝑦
𝑘 and 𝑥(𝑡) = 𝑐

𝑘 . We have:

𝑔𝑧 = 𝑔𝑦 − 𝑔𝑘 ⇒ 𝑔𝑧 = −(1 − 𝛼)(𝑧 − (𝑛 + 𝛿) − 𝑥)

𝑔𝑥 = 𝑔𝑐 − 𝑔𝑘 ⇒ 𝑔𝑥 = 1
𝜃 (𝛼 ̃𝑦

𝑘̃
− 𝛿 − 𝜌) − 𝑧 + (𝛿 + 𝑛) + 𝑥

𝑔𝑦 = 𝛼𝑔𝑘 + (1 − 𝛼)𝑔𝐴

which is linear in 𝑥 and 𝑧. It is easy to show that for 𝑔𝑥 = 𝑔𝑧 = 0 (i.e. in steady state), we
have by definition 𝑔𝑦 = 𝑔𝑘 = 𝑔𝑐 = 𝑔𝐴, where the last equality comes from the third equation
of the system above. We may then derive steady state values of 𝑥 and 𝑧 by solving the two
others equations:

𝑧 = (𝜌 + 𝛿) + 𝜃𝑔𝐴
𝛼 , 𝑥 = (𝜌 + (1 − 𝛼)𝛿) − 𝛼𝑛 + (𝜃 − 𝛼)𝑔𝐴

𝛼
Furthermore, we can also linearize the expressions of 𝑔𝑧 and 𝑔𝑥 to study transitional dynam-
ics.

Note that an advantage of this method is that solving using ratios means that we are scale-
invariant: it does not matter if the system is written in terms of aggregate variable or per
capita or in effective labor (as soon as we keep consistency between the set of equations).
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7 The Overlapping Generations Model

The Ramsey-Cass-Koopmans model considers a representative household that lives infinite
horizons. In many circumstances, however, the assumption of a representative household
is not appropriate. One important set of circumstances that may require departure from
this assumption is in the analysis of an economy in which new households are born over
time. The arrival of new households in the economy is not only a realistic feature, but it
also introduces a range of new economic interactions. In particular, decisions made by older
generations will affect the prices faced by younger generations. These economic interactions
have no counterpart in the neoclassical growth model. They are most succinctly captured
in the overlapping generations (OLG) models introduced and studied by Paul Samuelson and
later by Peter Diamond. The OLG model considers infinite agents who only live finite periods.
In particular, new individuals are continually being born, and old individuals are continually
dying.

The OLG model is useful for a number of reasons. First, it captures the potential interaction
of different generations of individuals in the marketplace. Second, it provides a tractable alter-
native to the infinite-horizon representative agent models. Third, some of the key implications
are different from those of the neoclassical growth model (e.g. dynamic inefficiency). Finally,
the OLG model provides a flexible framework to study the effects of macroeconomic policies
such as national debt and social security.

7.1 The Model

In this economy, time is discrete and runs to infinity. Each individual lives two periods. For
the generation born in period 𝑡, they live for period 𝑡 and 𝑡 + 1. In period 𝑡, they are young
generation, and become old generation in period 𝑡 + 1. As individuals live only two periods,
the economy always have two generations in any period. 𝐿𝑡 individuals are born in period 𝑡.
As in Ramsey model, population grows at rate 𝑛, i.e.,

𝐿𝑡 = (1 + 𝑛)𝐿𝑡−1

Thus, there are 𝐿𝑡 young generation and 𝐿𝑡−1 (= 𝐿𝑡/(1 + 𝑛)) old generation.
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7.1.1 Consumers

Each consumer supplies 1 unit of labor at wage rate 𝑊𝑡 when he/she is young and divides the
labor income between first-period consumption and saving with interest rate 𝑅𝑡 = (1 + 𝑟𝑡).
In the second period, the individual simply consumes the saving and any interest he/she
earns. Let 𝑐1𝑡 and 𝑐2𝑡 denote the consumption in period 𝑡 of young and old individuals. A
representative individual born in period 𝑡 solves

max
{𝑐1𝑡,𝑐2𝑡+1}

𝑐1−𝜃
1𝑡

1 − 𝜃 + 𝛽 𝑐1−𝜃
2𝑡+1

1 − 𝜃

subject to budget constraint

𝑐1𝑡 + 𝑠𝑡 ≤ 𝑊𝑡
𝑐2𝑡+1 ≤ 𝑅𝑡+1𝑠𝑡

The above problem can be written more compactly by substituting the budget constraints
as

max
𝑠𝑡

(𝑊𝑡 − 𝑠𝑡)
1−𝜃

1 − 𝜃 + 𝛽 (𝑅𝑡+1𝑠𝑡)
1−𝜃

1 − 𝜃

and consumptions are give by

𝑐1𝑡 = 𝑊𝑡 − 𝑠𝑡
𝑐2𝑡+1 = 𝑅𝑡+1𝑠𝑡

First order condition for the optimal saving is

(𝑊𝑡 − 𝑠𝑡)
−𝜃 = 𝛽𝑅𝑡+1 (𝑅𝑡+1𝑠𝑡)

−𝜃

Thus the optimal saving 𝑠𝑡 is given by

𝑠𝑡 = 𝑠 (𝑅𝑡+1) 𝑊𝑡

where 𝑠 (𝑅𝑡) = 1
1+𝛽− 1

𝜃 𝑅1− 1
𝜃

𝑡+1

indicates the saving rate. Note that, for 𝜃 = 1 (the utility is

logarithm), the saving rate is just a constant 𝛽
1+𝛽 . Later we will show that in this case the

OLG model is equivalent to the Solow model with saving rate 𝛽/(1 + 𝛽). Moreover, optimal
consumptions are given by
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𝑐1𝑡 = [1 − 𝑠 (𝑅𝑡+1)] 𝑊𝑡
𝑐2𝑡+1 = 𝑅𝑡+1𝑠 (𝑅𝑡+1) 𝑊𝑡

7.1.2 Firms

A representative firm hires labor 𝐿𝑡 and rents capital 𝐾𝑡 to produce final goods according to
the production function 𝑌𝑡 = 𝐹 (𝐾𝑡, 𝐴𝑡𝐿𝑡), where the technology 𝐴𝑡 is assumed to follow

𝐴𝑡 = (1 + 𝑔)𝑡𝐴𝑡−1

We assume that the capital is fully depreciated. The firm aims to maximize the profit by
choosing 𝐿𝑡 and 𝐾𝑡. The optimization problem is

max
{𝐿𝑡,𝐾𝑡}

𝐹 (𝐾𝑡, 𝐴𝑡𝐿𝑡) − 𝑊𝑡𝐿𝑡 − 𝑅𝑡𝐾𝑡

The first order conditions w.r.t. {𝐿𝑡, 𝐾𝑡} are given by

𝑅𝑡 = 𝐹𝐾 (𝐾𝑡, 𝐴𝑡𝐿𝑡)
𝑊𝑡 = 𝐹𝐴𝐿 (𝐾𝑡, 𝐴𝑡𝐿𝑡) 𝐴𝑡

We assume the production function is constant return to scale. Let 𝑓(𝑘̃) = 𝐹 ( 𝐾
𝐴𝐿 , 1), where

𝑘̃ = 𝐾
𝐴𝐿 . The input demands can be expressed as

𝑅𝑡 = 𝑓 ′ (𝑘̃𝑡)
𝑊𝑡 = [𝑓 (𝑘̃𝑡) − 𝑓 ′ (𝑘̃𝑡) 𝑘̃𝑡] 𝐴𝑡

(7.1)

7.1.3 Competitive Equilibrium

In the competitive equilibrium, consumers and firms achieve the individual optimum. Each
market clears. In particular, capital market clearing condition implies

𝐾𝑡+1 = 𝐿𝑡𝑠 (𝑅𝑡+1) 𝑊𝑡

According to (7.1), the last equation can be rewritten as
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𝑘̃𝑡+1 = 1
(1 + 𝑔)(1 + 𝑛)𝑠 (𝑓 ′ (𝑘̃𝑡+1)) [

𝑓 (𝑘̃𝑡) − 𝑓 ′ (𝑘̃𝑡) 𝑘̃𝑡

𝑓 (𝑘̃𝑡)
] 𝑓 (𝑘̃𝑡)

The above equation fully describes the dynamics of capital stock.

7.2 Dynamics

• Special Case: 𝜃 = 1.

Assume that 𝜃 = 1 (utility is logarithm) and the production function takes Cobb-Douglas
form, i.e., 𝐹(𝐾, 𝐴𝐿) = 𝐾𝛼(𝐴𝐿)1−𝛼. The saving rate in this case is 𝑠 (𝑓 ′ (𝑘̃𝑡+1)) = 𝛽

1+𝛽 .
Equation (19) can be reduced into

𝑘̃𝑡+1 = 1
(1 + 𝑔)(1 + 𝑛)

𝛽
1 + 𝛽 (1 − 𝛼)𝑘̃𝛼

𝑡 (7.2)

Note that this expression essentially has the same form as the one derived from the Solow
model. Hence, when utility function takes logarithm form, the OLG model is degenerated to
the Solow model.

7.3 A word on the general Case

Once we relax the assumptions of logarithmic utility and Cobb-Douglas production technology,
a wide range of behaviors of the economy are possible, including multiple equilibria. See Michel
and De La Croix (2002)

7.4 Dynamic Inefficiency

Even though in the OLG model, competitive equilibrium is achieved, it turns out that the
competitive allocation is not necessarily dynamically efficient, just as in the Solow model. To
see this, let us discuss the capital stock at the steady state. For simplicity, we still consider
the special case where 𝜃 = 1 and 𝑓(𝑘̃) = 𝑘̃𝛼.

From (7.2), we can obtain the steady-state capital stock 𝑘∗ for the competitive equilibrium
from

𝑓 ′ (𝑘∗) = 𝛼 (𝑘∗)𝛼−1 = (1 + 𝑔)(1 + 𝑛) (1 + 𝛽
𝛽

𝛼
1 − 𝛼) . (7.3)
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Now consider a social planner’s problem:

max
{𝑐1𝑡,𝑐2𝑡}

∑
𝑡=0

𝛽𝑡 (𝐿𝑡
𝑐1−𝜃

1𝑡
1 − 𝜃 + 𝐿𝑡−1𝜙 𝑐1−𝜃

2𝑡
1 − 𝜃)

= max
{𝑐1𝑡,𝑐2𝑡}

∑
𝑡=0

[𝛽(1 + 𝑛)(1 + 𝑔)]𝑡 ( ̃𝑐1−𝜃
1𝑡

1 − 𝜃 + 1
1 + 𝑛𝜙 ̃𝑐1−𝜃

2𝑡
1 − 𝜃)

where 𝜙 > 0 is the weight that social planner puts on the old generation, ̃𝑐1𝑡 = 𝑐1𝑡/𝐴𝑡, ̃𝑐2𝑡 =
𝑐2𝑡/𝐴𝑡. The resource constraint is

𝐿𝑡𝑐1𝑡 + 𝐿𝑡−1𝑐2𝑡 + 𝐾𝑡+1 = 𝑌𝑡

Detrending both side with 𝐴𝑡𝐿𝑡 gives us

̃𝑐1𝑡 + ̃𝑐2𝑡
1 + 𝑛 + (1 + 𝑛)(1 + 𝑔)𝑘̃𝑡+1 = 𝑓 (𝑘̃𝑡)

FOCs w.r.t { ̃𝑐1𝑡, ̃𝑐2𝑟, 𝑘̃𝑡+1} are given by

̃𝑐−𝜃
1𝑡 = 𝜙 ̃𝑐−𝜃

2𝑡 = 𝜆𝑡

(1 + 𝑛)(1 + 𝑔)𝜆𝑡 = 𝛽𝜆𝑡+1𝑓 ′ (𝑘̃𝑡+1)
(7.4)

In the steady state, we have

𝑓 ′(𝑘𝑔𝑟) = (1 + 𝑛)(1 + 𝑔)
𝛽

which is the golden rule.

Comparing (7.3) with (7.4), the capital stock in competitive equilibrium is efficient only if

(1 + 𝛽)𝛼
1 − 𝛼 = 1

Therefore, in general, the competitive equilibrium in the OLG model is not dynamically effi-
cient in contrast to the Ramsey model. This is mainly due to the finite-horizon of households
which prevents violating any transversality condition.
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Part III

Endogenous Growth Theory

85



8 The AK model - Spillovers à la Romer(1986)

8.1 Introduction

We started from the standard Solow-Swan growth model. This model, as well as the Ramsey
model, has neoclassical production function for the final good. With neoclassical production
function these models cannot endogenously generate long run growth since the returns on cap-
ital decline with the accumulation of capital because of the decreasing returns assumption.

The model presented below assumes a neoclassical production function - at the “individual
level.” In addition, it assumes that the labour augmenting technology is a function of av-
erage percapita capital stock. While doing so, it has in mind some “learning by doing” ef-
fects/spillovers (i.e., the workers learn/become more productive while working with desks,
computers, etc.).

8.2 The Model

The main structure of the model is as follows:

• The level of technology/ efficiency that augments the labour input in the production is
a function of the average capital-labour ratio in the economy. The motivation for this is
that investment of a firm brings productivity gains from its use from the labour. The
firm builds up the knowledge (technical expertise) of how to efficiently use the capital by
accumulating it, i.e., there is “learning-by-doing” (e.g., production lines). This learning-
by-doing effect has an aggregate impact, when any individual firm’s technical efficiency
is public knowledge, so that all firms can benefit from the technological advance for the
use of capital in the production. This gives the link between ” 𝐴𝑖 ” (i.e., some 𝑖 th firm’s
efficiency) and the average capital-labour ratio in the economy.

• The level of technology is assumed to be 𝐴 ≡ ̄𝐴𝑘, where 𝑘 is the average of per-capita
capital stock and ̄𝐴 > 0 measures the efficiency of use of the capital

• The production function takes the form: 𝑌𝑖 = 𝐹 (𝐾𝑖, 𝐴𝐿𝑖) = 𝐿𝑖𝐹 (𝑘𝑖, ̄𝐴𝑘) ≡
𝐿𝑖 ̄𝐴𝑘𝑓 ( 𝑘𝑖̄𝐴𝑘). Thus, there are decreasing returns to capital at the firm-level since the
firm is so small that it does not take into account its impact on 𝐴. However, there are
constant returns to capital in symmetric equilibrium since 𝑘𝑖 = 𝑘.
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• One-sector model of growth: 𝐾̇ = 𝑌 − 𝐶 − 𝛿𝐾
• From the consumption-side, the representative household chooses its consumption and

next period assets to maximize its lifetime utility 𝑈 = ∫∞
0 𝑒−(𝜌−𝑛)𝑡𝑢(𝑐)𝑑𝑡, subject to its

budget constraint: ̇𝑏(𝑡) = (𝑟 − 𝑛)𝑏(𝑡) + 𝑤 − 𝑐, where 𝑢(𝑐) = 𝑐1−𝜃−1
1−𝜃 .

• Population grows at exogenous rate 𝑛

For any individual producer the level of efficiency 𝐴( ̄𝐴𝑘) is taken as given, along with the
prices of inputs, when choosing capital and labour to maximize its per period profits 𝜋𝑖, i.e.,

max
𝐾𝑖(𝑡),𝐿𝑖(𝑡)

𝜋𝑖 = 𝐹 (𝐾𝑖(𝑡), 𝐴(𝑡)𝐿𝑖(𝑡)) − 𝑅(𝑡)𝐾𝑖(𝑡) − 𝑤(𝑡)𝐿𝑖(𝑡)

Therefore the optimal rules are

𝜕𝜋𝑖
𝜕𝐾𝑖

= 0

⇔ 𝑅 = 𝐹𝐾𝑖
(𝐾𝑖, 𝐴𝐿𝑖)

=
𝜕𝐿𝑖 ̄𝐴𝑘𝑓 ( 𝑘𝑖̄𝐴𝑘)

𝜕𝐾𝑖

= 𝑓 ′ ( 𝑘𝑖
̄𝐴𝑘)

and

𝜕𝜋𝑖
𝜕𝐿𝑖

= 0

⇔ 𝑤 = 𝐹𝐿𝑖
(𝐾𝑖, 𝐴𝐿𝑖)

= 𝐴𝐹𝐴𝐿𝑖
(𝐾𝑖, 𝐴𝐿𝑖)

=
𝜕𝐿𝑖 ̄𝐴𝑘𝑓 ( 𝑘𝑖̄𝐴𝑘)

𝜕𝐿𝑖

= ̄𝐴𝑘𝑓 ( 𝑘𝑖
̄𝐴𝑘) − 𝑘𝑖𝑓 ′ ( 𝑘𝑖

̄𝐴𝑘)

Since all producers are identical, the equilibrium must be symmetric, i.e., 𝑘𝑖 = 𝑘 for ∀𝑖.
Therefore, from the asset market equilibrium condition ( 𝑏(𝑡) = 𝑘 and 𝑟 = 𝑅(𝑡) − 𝛿 ) it follows
that the net rate of returns on assets in the economy is

𝑟 = 𝑓 ′ ( 1
̄𝐴) − 𝛿
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The standard optimal consumption path that comes from the intertemporal maximization
problem of the households is

̇𝑐(𝑡)
𝑐(𝑡) = 1

𝜃(𝑟 − 𝜌)

As a result, the equilibrium is characterized by two dynamic equations (i.e., the law of motion
of capital in per-capita terms and the optimal consumption path)

̇𝑐(𝑡)
𝑐(𝑡) = 1

𝜃 [𝑓 ′ ( 1
̄𝐴) − 𝛿 − 𝜌]

𝑘̇(𝑡)
𝑘(𝑡) = ̄𝐴𝑓 ( 1

̄𝐴) − 𝛿 − 𝑛 − 𝑐(𝑡)
𝑘(𝑡)

Meanwhile, the standard TVC applies, that the value of the assets (capital) is equal to zero
in the end of the planning horizon

lim
𝑡→∞

𝑘(𝑡)𝜆(𝑡)𝑒−(𝜌−𝑛)𝑡 = 0

8.3 Equilibrium and Balanced Growth Path

Given that in equilibrium the marginal product of capital is independent of the level of per
capita capital, it is always constant, i.e.,

𝑟 = 𝑓 ′ ( 1
̄𝐴) − 𝛿

The constant returns to capital ensure that there can exist long-run growth driven by capital
accumulation in this model. Consumption growth is constant in any equilibrium path, i.e.,

̇𝑐(𝑡)
𝑐(𝑡) = 1

𝜃 [𝑓 ′ ( 1
̄𝐴) − 𝛿 − 𝜌] .

Increase of the per capita consumption over time requires that the externalities in the capital
stock (as measured by ̄𝐴 ) be large enough, to increase the net marginal product of capital,
𝑓 ′ ( 1

̄𝐴) − 𝛿, above the time preference rate, i.e.,

𝑓 ′ ( 1
̄𝐴) − 𝛿 > 𝜌
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Given an initial level (choice) of consumption per capita, 𝑐(0), the economy is always along a
BGP. In other words, there is no transition dynamics in this model and the economy imme-
diately jumps to a balanced growth path. The proof is offered below. From the first dynamic
equation (optimal path of consumption) follows that

∫ ̇𝑐(𝑡)
𝑐(𝑡)𝑑𝑡 = ∫ 1

𝜃 [𝑓 ′ ( 1
̄𝐴) − 𝛿 − 𝜌] 𝑑𝑡 ⇒

∫ 1
𝑐(𝑡)

𝑑𝑐(𝑡)
𝑑𝑡 𝑑𝑡 = 1

𝜃 [𝑓 ′ ( 1
̄𝐴) − 𝛿 − 𝜌] 𝑡 + ̃𝑐0 ⇒

where 𝑚0 is some constant,

∫ 1
𝑐(𝑡)𝑑𝑐(𝑡) = 1

𝜃 [𝑓 ′ ( 1
̄𝐴) − 𝛿 − 𝜌] 𝑡 + ̃𝑐0 ⇒

ln 𝑐(𝑡) = 1
𝜃 [𝑓 ′ ( 1

̄𝐴) − 𝛿 − 𝜌] 𝑡 + ̃𝑐0 ⇒

𝑐(𝑡) = 𝑐(0)𝑒 1
𝜃 [𝑓′( 1

𝐴̄ )−𝛿−𝜌]𝑡.

with 𝑐(0) = 𝑒 ̃𝑐0 . From the law of motion of per-capita capital it follows that

𝑘̇(𝑡) = ( ̄𝐴𝑓 ( 1
̄𝐴) − 𝛿 − 𝑛) 𝑘(𝑡) − 𝑐(0)𝑒 1

𝜃 [𝑓′( 1
𝐴̄ )−𝛿−𝜌]𝑡

The solution to this differential equation is given by the (linear combination) sum of the
general solution of the homogenous differential equation and a particular solution of the non-
homogenous differential equation. In other words, solve first

̇𝑘̂(𝑡) = ( ̄𝐴𝑓 ( 1
̄𝐴) − 𝛿 − 𝑛) 𝑘̂(𝑡) ⇒ 𝑘̂(𝑡) = 𝑘̂(0)𝑒( ̄𝐴𝑓( 1

𝐴̄ )−𝛿−𝑛)𝑡

then find a solution to the general equation. A guess for such solution is

𝑘̃(𝑡) = 𝑘̃1𝑐(0)𝑒 1
𝜃 [𝑓′( 1

𝐴̄ )−𝛿−𝜌]𝑡

where 𝑘̃1 is found by plugging the 𝑘̂ to the law of motion of per-capita capital after differen-
tiation w.r.t to time, i.e.,
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𝑘̃1𝑐(0)1
𝜃 [𝑓 ′ ( 1

̄𝐴) − 𝛿 − 𝜌] 𝑒 1
𝜃 [𝑓′( 1

𝐴̄ )−𝛿−𝜌]𝑡 =

⇒[ ̄𝐴𝑓 ( 1
̄𝐴) − 𝛿 − 𝑛] 𝑘̃1𝑐(0)𝑒 1

𝜃 [𝑓′( 1
𝐴̄ )−𝛿−𝜌]𝑡 − 𝑐(0)𝑒 1

𝜃 [𝑓′( 1
𝐴̄ )−𝛿−𝜌]𝑡

𝑘̃1 = 1/ {[ ̄𝐴𝑓 ( 1
̄𝐴) − 𝛿 − 𝑛] − 1

𝜃 [𝑓 ′ ( 1
̄𝐴) − 𝛿 − 𝜌]} .

Thus the solution of the differential equation is

𝑘(𝑡) = 𝑘̂(0)𝑒[ ̄𝐴𝑓( 1
𝐴̄ )−𝛿−𝑛]𝑡 + 𝑘̃1𝑐(0)𝑒 1

𝜃 [𝑓′( 1
𝐴̄ )−𝛿−𝜌]𝑡.

Given that 𝑓 ′′ < 0 the following inequalities hold

̄𝐴𝑓 ( 1
̄𝐴) − 𝛿 − 𝑛 > 𝑓 ′ ( 1

̄𝐴) − 𝛿 − 𝜌 > 0

From household’s optimization problem, in turn, follows that the rate of return on capital
accumulation in terms of utility is

−𝜆̇(𝑡)
𝜆(𝑡) = 𝑟(𝑡) − (𝜌 − 𝑛)

lim
𝑡→∞

𝑘(𝑡)𝜆(𝑡)𝑒−(𝜌−𝑛)𝑡 = 0.

Therefore, the transversality condition requires that 𝑘̂(0) = 0 and

𝑘(𝑡) = 𝑘̃1𝑐(0)𝑒 1
𝜃 [𝑓′( 1

𝐴̄ )−𝛿−𝜌]𝑡

which means that per-capita capital grows at the same (constant) rate as the consumption.

Another and more intuitive way to show that the growth rate of per-capita capital is always
constant and equal to the growth rate of consumption.

Capital per head will grow at a constant rate only if the consumption-to-capital ratio remains
constant over time. In order to examine the properties of the BGP, examine the behavior of
the 𝑐

𝑘 ratio, i.e.,

̇(𝑐(𝑡)/𝑘(𝑡))
𝑐(𝑡)/𝑘(𝑡) = ̇𝑐(𝑡)

𝑐(𝑡) − 𝑘̇(𝑡)
𝑘(𝑡) = 𝑐(𝑡)

𝑘(𝑡) +
𝑓 ′ ( 1

̄𝐴) − 𝜃 ̄𝐴𝑓 ( 1
̄𝐴) − (1 − 𝜃)𝛿 − 𝜃𝑛 − 𝜌

𝜃

Note that the above dynamic equation is unstable in 𝑐(𝑡)
𝑘(𝑡) . Moreover, unless ̇𝑐(𝑡)

𝑐(𝑡) = 𝑘̇(𝑡)
𝑘(𝑡) , the

growth rate of 𝑘(𝑡) either should cease or should increase to infinity. Both cases would violate
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transversality condition. Therefore, it must be that the BGP is characterized by constant
( 𝑐

𝑘)∗ = (1−𝜃)𝛿+𝜃 ̄𝐴𝑓( 1
𝐴̄ )−𝑓′( 1

𝐴̄ )+𝜌−𝜃𝑛
𝜃 . In the event of a structural change, consumption in this

model makes a “discrete” shift to ensure that 𝑐(𝑡)
𝑘(𝑡) = ( 𝑐

𝑘)∗ and the economy is set again on a
BGP.

The steady-state growth rate of per capita consumption and capital is

𝑔 = ̇𝑐(𝑡)
𝑐(𝑡) = 𝑘̇(𝑡)

𝑘(𝑡) = 1
𝜃 [𝑓 ′ ( 1

̄𝐴) − 𝛿 − 𝜌]

Furthermore, as in the Solow model, the savings rate in this economy is constant but is an
endogenous object since:

𝑠 = 𝑌 (𝑡) − 𝐶(𝑡)
𝑌 (𝑡) = 1 − 𝑐∗

𝑘
1

̄𝐴𝑓 ( 1
̄𝐴)

=
𝑓 ′ ( 1

̄𝐴) − (1 − 𝜃)𝛿 − 𝜌
𝜃 ̄𝐴𝑓 ( 1

̄𝐴)

8.4 Comparative Statics

• Increase in ̄𝐴 increases 𝑔 and has ambiguous effect on savings rate 𝑠
• Higher ̄𝐴 implies higher growth rate 𝑔 since it increases the effectiveness of capital per

head in increasing the labor productivity
• Increase in 𝜃 or 𝜌 decrease both 𝑔 and 𝑠
• The higher 𝜃 and 𝜌 imply lower saving rate 𝑠 since the first one increases the consumption

smoothing and the second one induces higher consumption at current period. In turn,
lower savings rate implies lower growth 𝑔 through lower capital accumulation and, thus,
learning-by-doing spillovers.

8.5 Social Planner’s Problem

Note that the welfare theorems will not work in this model since knowledge externalities are
assumed, which are inherent to the accumulated capital stock and are not internalized in
competitive equilibrium. Due to these externalities the competitive equilibrium outcome may
not be the first best (the socially optimal one).

The Social Planner (SP) internalizes these externalities and therefore he identifies that 𝑘𝑖(𝑡) =
𝑘(𝑡), when considering the marginal product of capital in the production. The SP selects the
paths of quantities that deliver maximum utility (social welfare). The SP’s problem is

91



max
𝑐

∫
∞

0

𝑐(𝑡)1−𝜃 − 1
1 − 𝜃 𝑒−(𝜌−𝑛)𝑡𝑑𝑡

s.t.

𝑘̇(𝑡) = ̄𝐴𝑘(𝑡)𝑓 ( 1
̄𝐴) − 𝑐(𝑡) − (𝑛 + 𝛿)𝑘(𝑡)

𝑘(0) > 0 given

This problem in terms of current value Hamiltonian is

max
𝑐

𝐻𝑆𝑃 = 𝑐(𝑡)1−𝜃 − 1
1 − 𝜃 + 𝜆(𝑡) ( ̄𝐴𝑘(𝑡)𝑓 ( 1

̄𝐴) − 𝑐(𝑡) − (𝑛 + 𝛿)𝑘(𝑡)) .

The first order conditions (optimal rules) are

𝑐(𝑡)−𝜃 = 𝜆(𝑡),

𝜆̇(𝑡) = 𝜆(𝑡)(𝜌 − 𝑛) − 𝜆(𝑡) ( ̄𝐴𝑓 ( 1
̄𝐴) − (𝑛 + 𝛿)) .

Therefore,

̇𝑐(𝑡)
𝑐(𝑡) = 1

𝜃 ( ̄𝐴𝑓 ( 1
̄𝐴) − 𝛿 − 𝜌)

The same way as in competitive equilibrium it can be argued that the capital per head grows
at the same (constant) rate as the consumption. Thus,

𝑔𝑆𝑃 ≡ ̇𝑐(𝑡)
𝑐(𝑡) = 𝑘̇(𝑡)

𝑘(𝑡) = 1
𝜃 [ ̄𝐴𝑓 ( 1

̄𝐴) − 𝛿 − 𝜌]

and

( 𝑐(𝑡)
𝑘(𝑡))

𝑆𝑃
≡ 𝑐(𝑡)

𝑘(𝑡) =
(1 − 𝜃) (𝛿 − ̄𝐴𝑓 ( 1

̄𝐴)) − 𝜃𝑛 + 𝜌
𝜃

- The SP achieves higher growth rate because 𝑓( 1
𝐴̄ )/(1/ ̄𝐴)
𝑓′( 1

𝐴̄ ) > 1, which holds due to the concavity
of the production function. - The social marginal product of capital exceeds the private one,
because the latter does not account for the efficiency benefits delivered by the overall level of
capital stock in the economy. As a result, the SP saves more since ( 𝑐

𝑘)∗ = ( 𝑐
𝑘)𝑆𝑃 +

̄𝐴𝑓( 1
𝐴̄ )−𝑓′( 1

𝐴̄ )
𝜃 ,

where the second term captures the gap between the social and private returns to savings.
Thus, the SP achieves higher long-run growth.
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• A growth promoting policy would try to eliminate the difference between the ( 𝑐
𝑘)∗ =

( 𝑐
𝑘){S P}$. Since ( 𝑐

𝑘)∗ < ( 𝑐
𝑘)𝑆𝑃 this policy would motivate higher savings in competitive

equilibrium. Therefore, a policy could be a simple subsidy to the production that equates
the private return to capital to the socially optimal one and finances the subsidy through
lump sum tax imposed on households .
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9 Human capital and Growth (Lucas, 1988)

9.1 Introduction

In contrast to the models presented so far, Lucas (1988) assumes that there are two types of
assets endogenously accumulated in the economy, physical capital and human capital. The idea
is very simplistic and says that in addition to producing, for instance, more infrastructure we
also produce better (or more) educated workers. The better educated workers, then, produce
more, while using the same amount of labor. Therefore, the labor productivity increases, and
this, together with the capital accumulation, may enable long run growth.

It is worth emphasizing that the biggest difference between Romer (1986) and Lucas (1988)
models is that the latter endogenizes the process of labor productivity growth through human
capital accumulation, when the former thinks of spillover effects.

If presented in one sector form, the final good production side and the asset accumulation
processes of Lucas (1988) model can be written as

𝑌 = 𝐴𝐾𝛼𝐻1−𝛼 = 𝐶 + 𝐼𝐾 + 𝐼𝐻

where 𝐻 is the human capital input, 𝐼𝐾 and 𝐼𝐻 are the investments for physical capital and
human capital accumulation, i.e.,

𝐼𝐾 = 𝐾̇ + 𝛿𝐾𝐾
𝐼𝐻 = 𝐻̇ + 𝛿𝐻𝐻

where 𝛿𝐾 is the depreciation rate physical capital and 𝛿𝐻 is the depreciation rate of human
capital. Given that we consider an equilibrium where both assets are accumulated, the returns
to both assets should be equal. For the current exercise let 𝛿𝐾 = 𝛿𝐻 ≡ 𝛿. This would imply
that,
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𝜕𝑌
𝜕𝐾 − 𝛿 = 𝜕𝑌

𝜕𝐻 − 𝛿 ⇒

𝛼 𝑌
𝐾 = (1 − 𝛼) 𝑌

𝐻 ⇒

𝐻 = 1 − 𝛼
𝛼 𝐾 ⇒

𝑌 = [𝐴 (1 − 𝛼
𝛼 )

1−𝛼
] 𝐾

Thus, in terms of structure, the ideas behind the Romer (1986) and Lucas (1988) models
are quite similar. Both end up having an aggregate production function with non-decreasing
returns to scale, and in particular linear in capital. However, Romer (1986) introduces internal
spillover while Lucas (1988) considers external effects through human capital accumulation.

This one sector model was a simple representation of Lucas (1988). The model with corre-
sponding assumptions is the following.

9.2 the Model

This is a two-sector model of growth, where the physical capital is still produced with the
same technology as the consumption good, but human capital is produced with a different
technology. Human capital is the essential input for the production of new human capital.
The motivation for this is that the human capital of one generation is an important factor in
affecting the formation of human capital of the later generations. If the production of human
capital is within a household, that would be the human capital “embodied” in the parents.
If its production is through formal education, then that would be the human capital of the
teachers with their methodologies (e.g., books). The accumulation (production) of human
capital 𝐻 follows a law of motion:

𝐻̇ = 𝐵𝐻𝐻 − 𝛿𝐻𝐻,

where 𝐻𝐻 is the human capital used for its own production. Every unit of human capital
produces 𝐵 > 0 new units of human capital. This stock depreciates at a rate 𝛿𝐻 > 0 (e.g.,
due to “aging” for instance).

Note

There are no diminishing returns to the production of human capital with this type of
production function for the human capital. The non-decreasing returns to the production
of human capital will be the engine of long-run growth in this model. The increasing
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stock of human capital drives the accumulation of physical capital and the economy grows
indefinitely. If, instead, the production of human capital had decreasing returns to its
input, this model would have the same predictions as the Solow-Swan model and it would
not be able explain growth in the long-run.

The production of final output combines physical capital stock and human capital 𝐻𝑌 , i.e.,
𝑌 = 𝐴𝐾𝛼𝐻1−𝛼

𝑌 , where 𝐻𝑌 is the human capital used in production of final good. Standard
neoclassical assumptions apply.

The representative household chooses its consumption path, the assets (physical and human
capital) in the next period and the allocation of its human capital input between final good and
human capital production, in order to maximize its lifetime utility 𝑈 = ∫∞

0 𝑢(𝐶)𝑒−𝜌𝑡𝑑𝑡, subject
to standard budget constraint and the law of motion of human capital, where 𝑢(𝐶) = 𝐶1−𝜃−1

1−𝜃 .

Define the fraction of human capital used in the production of final output as 𝑢 ≡ 𝐻𝑌
𝐻 and its

complement 1−𝑢 = 𝐻𝐻
𝐻 . There are no externalities involved in the input and output markets.

By the first welfare theorem it is known that the competitive equilibrium will achieve the
first-best allocations. The second welfare theorem implies that one can directly solve for the
optimal allocations, as there are prices that will support the competitive equilibrium that
achieves such intratemporal and intertemporal allocations.

The intertemporal allocation problem has two controls, consumption and allocation of human
capital in the two sectors of production that compete for it. There are two state variables,
human and physical capital. Physical capital accumulation requires the saving of output
(consumption choices), while the human capital accumulation requires investments in terms
of real resources that is to say some human capital needs to be driven out of the production
of final output to produce future human capital.

Having in mind the welfare theorems, the representative households problem is

max
𝑢,𝐶

𝑈 = ∫
∞

0

𝐶1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

s.t.
𝐾̇ = 𝐴𝐾𝛼(𝑢𝐻)1−𝛼 − 𝛿𝐾𝐾 − 𝐶,
𝐻̇ = 𝐵(1 − 𝑢)𝐻 − 𝛿𝐻𝐻
𝐾(0), 𝐻(0) > 0 given.

Let 𝜆𝐾 and 𝜆𝐻 be the shadow prices for the physical and human capital, respectively. The
problem, if written in terms of current value Hamiltonian, is given by

max
𝑢,𝐶

𝐻𝐿𝐶 = 𝐶1−𝜃 − 1
1 − 𝜃 + 𝑞𝐾 [𝐴𝐾𝛼(𝑢𝐻)1−𝛼 − 𝛿𝐾𝐾 − 𝐶] + 𝑞𝐻 [𝐵(1 − 𝑢)𝐻 − 𝛿𝐻𝐻]
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The optimal rules are

𝐶−𝜃 =𝜆𝐾,

𝜆𝐾(1 − 𝛼)𝑌
𝑢 =𝜆𝐻𝐵𝐻,

𝜆̇𝐾 =𝜌𝜆𝐾 − 𝜆𝐾 (𝛼 𝑌
𝐾 − 𝛿𝐾)

= − 𝜆𝐾 (𝛼 𝑌
𝐾 − 𝛿𝐾 − 𝜌) ,

𝜆̇𝐻 =𝜌𝜆𝐻 − {𝜆𝐾(1 − 𝛼) 𝑌
𝐻 + 𝜆𝐻 [𝐵(1 − 𝑢) − 𝛿𝐻]} .

(9.1)

The standard transversality conditions apply for each of the state variables:

lim
𝑡→∞

𝑒−𝜌𝑡𝜆𝐾(𝑡)𝐾(𝑡) = 0
lim

𝑡→∞
𝑒−𝜌𝑡𝜆𝐻(𝑡)𝐻(𝑡) = 0

Using the first and third equations in (9.1), it follows that

̇𝐶
𝐶 = 1

𝜃 (𝛼 𝑌
𝐾 − 𝛿𝐾 − 𝜌) (9.2)

While from the second and fourth equations, we get:

𝜆̇𝐻 = 𝜌𝜆𝐻 − {𝜆𝐻
𝐵𝐻

(1 − 𝛼)𝑌
𝑢

(1 − 𝛼) 𝑌
𝐻 + 𝜆𝐻 [𝐵(1 − 𝑢) − 𝛿𝐻]}

= 𝜌𝜆𝐻 − {𝜆𝐻𝐵𝑢 + 𝜆𝐻 [𝐵(1 − 𝑢) − 𝛿𝐻]} ⇒
𝜆̇𝐻 = −𝜆𝐻 (𝐵 − 𝛿𝐻 − 𝜌)

9.3 Equilibrium and Balanced Growth Path

From the optimal consumption path (10.8) and that the growth rate of consumption at steady
state should be constant, it follows that the aggregate output 𝑌 and capital stock 𝐾 grow at
the same rate, i.e., 𝑔𝐾 = 𝑔𝑌 . From the resource constraint (or the law of motion of capital)
𝐾̇
𝐾 = 𝐴𝐾𝛼(𝑢𝐻)1−𝛼

𝐾 − 𝛿𝐾 − 𝐶
𝐾 = 𝑌

𝐾 − 𝛿𝐾 − 𝐶
𝐾 follows that in steady-state the consumption and

capital grow at the same rate, i.e., 𝑔𝐶 = 𝑔𝐾 = 𝑔𝑌 . From the production of human capital,
given that 𝐵 and 𝛿𝐻 are constant parameters and in steady-state 𝐻̇

𝐻 = is constant, it follows
that the share of human capital in production of final good is constant, i.e.,
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𝐻̇ = 𝐵(1 − 𝑢)𝐻 − 𝛿𝐻𝐻 ⇒

𝑢 = 1 − 𝑔𝐻 + 𝛿𝐻
𝐵 = constant

(9.3)

From the production of final good 𝑌 = 𝐴𝐾𝛼(𝑢𝐻)1−𝛼 follows that

𝑌
𝐾 = 𝐴𝐾𝛼(𝑢𝐻)1−𝛼

𝐾 = 𝐴 (𝑢𝐻
𝐾 )

1−𝛼

Given that 𝑔𝐾 = 𝑔𝑌 and 𝐴, 𝑢 = const the growth rates of physical and human capital are
equal, i.e., 𝑔𝐾 = 𝑔𝐻 = 𝑔𝐶 = 𝑔𝑌 ≡ 𝑔. From (31) and given that 𝑔𝐻 = 𝑔𝑌 and 𝑢, 𝛼, 𝐵 =
constant follows that

𝜆̇𝐻
𝜆𝐻

= 𝜆̇𝐾
𝜆𝐾

This result should not be a surprising result. Given that both human and physical capital
should be accumulated in equilibrium, the rates of return on their accumulation 𝜆̇𝑖

𝜆𝑖
(𝑖 = 𝐻, 𝐾)

should be equal. Otherwise, one of these assets will not be accumulated.

This equality implies then that

−𝜆̇𝐻
𝜆𝐻

= (𝐵 − 𝛿𝐻 − 𝜌) = (𝛼 𝑌
𝐾 − 𝛿𝐾 − 𝜌) = −𝜆̇𝐾

𝜆𝐾

Therefore, from the optimal consumption path (10.8), it follows that

𝑔 = 1
𝜃 (𝛼 𝑌

𝐾 − 𝛿𝐾 − 𝜌) = 1
𝜃 (𝐵 − 𝛿𝐻 − 𝜌) (9.4)

Thus, given that 𝑔𝐻 = 𝑔𝐶 = 𝑔, from (9.3) it follows that

𝑢∗ = 1 − (𝐵 − 𝛿𝐻 − 𝜌) + 𝜃𝛿𝐻
𝜃𝐵

= (𝜃 − 1) (𝐵 − 𝛿𝐻) + 𝜌
𝜃𝐵

In order to show that 𝑢∗ > 0, consider, for instance, the transversality condition for human
capital

lim
𝑡→∞

𝑒−𝜌𝑡𝜆𝐻(𝑡)𝐻(𝑡) = 0
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Given that in steady-state 𝜆̇𝐻
𝜆𝐻

= − (𝐵 − 𝛿𝐻 − 𝜌) and 𝑔𝐻 = 1
𝜃 (𝐵 − 𝛿𝐻 − 𝜌) ⇒ in order the

transversality condition to hold

− (𝐵 − 𝛿𝐻 − 𝜌) − 𝜌 + 1
𝜃 (𝐵 − 𝛿𝐻 − 𝜌) < 0 ⇒
1
𝜃 (𝐵 − 𝛿𝐻 − 𝜌) < (𝐵 − 𝛿𝐻) ⇒

(𝜃 − 1) (𝐵 − 𝛿𝐻) + 𝜌 > 0 ⇒
𝑢∗ > 0.

Meanwhile, from (9.4) follows that in steady-state

( 𝑌
𝐾 )

∗
= 𝐵 − 𝛿𝐻 + 𝛿𝐾

𝛼

From the law of motion of capital follows that in steady-state

( 𝐶
𝐾 )

∗
= ( 𝑌

𝐾 )
∗

− 𝛿𝐾 − 1
𝜃 [𝛼 ( 𝑌

𝐾 )
∗

− 𝛿𝐾 − 𝜌]

= 1
𝜃 [(𝜃 − 𝛼)𝐵 − 𝛿𝐻 + 𝛿𝐾

𝛼 − (𝜃 − 1)𝛿𝐾 + 𝜌]

Therefore the savings rate is

𝑠∗ = (𝑌 − 𝐶
𝑌 )

∗
= ( 𝑌

𝐾 )∗ − ( 𝐶
𝐾 )∗

( 𝑌
𝐾 )∗ = 𝛼 (𝐵 − 𝛿𝐻 − 𝜌) + 𝛼𝜃𝛿𝐾

𝜃 (𝐵 − 𝛿𝐻 + 𝛿𝐾)

9.4 Comparative statics

• Increase in 𝐵 increases 𝑔. Ambiguous effects on 𝑠∗ and 𝑢∗ (for 1
𝜃 ≥ 1, 𝑠∗ increases and 𝑢∗

decreases)
• Increase in 𝜃 (or 𝜌 ) decreases both 𝑔 and 𝑠∗, while it increases 𝑢∗

• Increase in 𝛼 increases 𝑠∗ but has no effect on 𝑔 and 𝑢∗
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9.5 Kaldor stylized facts and first models of endogenous growth

Assume that the aggregate human capital is uniformly distributed across the population:
𝐻 = ℎ𝐿 and there is no population growth. This suggests that the production function
may be thought as one with capital and labour. Human capital plays the role of labour-
augmenting technological progress that is endogenously generated by savings from the final
output production, i.e. 𝑌 = 𝐴𝐾𝛼(𝑢ℎ𝐿)1−𝛼. In equilibrium:

• 𝑔 = 𝐻̇
𝐻 = ℎ̇

ℎ .

• 𝑌 /𝐿 = 𝐴𝑢1−𝛼 ( 𝐾
ℎ𝐿)𝛼 ℎ increases at a rate 𝑔 - 𝐾/𝐿 also increases at a rate 𝑔 - 𝑌 /𝐾 is

constant

• The real interest rate 𝑟 = 𝐵 − 𝛿𝐻 is constant

• The wage rate 𝑤 = 𝜕𝑌
𝜕(𝑢𝐿) = (1 − 𝛼) 𝑌

𝐻 ℎ increases at rate 𝑔
• Growth rates across countries differ in the long-run due to technology and preference

parameters. Initial conditions (initial levels of human and physical capital stock) have
a permanent effect on the level of welfare. When economies start with different endow-
ments, the model predicts no convergence in levels of GDP per capita, even if countries
have the same long-run growth rate. Parameter changes explain transition dynamics (not
covered here) that can accommodate explanations for short episodes of strong growth.

9.6 Further comments

Lucas motivated the importance of human capital accumulation for long-run economic growth,
by forming two different (yet complementary) models. The first model allows for human
capital accumulation out of the market (e.g., education sector) that would imply that there
is a tradeoff between current consumption and future one, since human capital needs to be
driven out of current production sector. Furthermore, in his original specification he allowed
for both internal and external returns to human capital in the final-good production (spillovers
à la Romer, 𝑌 = (𝐴𝐻𝛾) 𝐾𝛼𝐻1−𝛼

𝑌 ; 𝛾 > 0).

The second model allows on-the-job accumulation of human capital, i.e., another form of
“learning-by-doing”. He assumed multiple goods, with different rates of human capital accu-
mulation as byproduct of their production. The trade-off in this case is that human capital
accumulation takes a form of a less desirable mix of current consumption goods. Growth pro-
moting policies implied by either model are very different (education subsidies vs. industrial
policy).

The research challenge that Lucas acknowledges himself is that human capital is not a measur-
able factor, and in particular its potential external effects. He proposes that a good example
of the importance of external effects of human capital is the formation of cities.
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Overall, the model lacks a good justification of the non-decreasing returns to the human capital
accumulation. The accumulation of human capital differs importantly from the accumulation
of knowledge and therefore this model is not a model of technological progress. The important
difference between them is that human capital is rival and excludable while knowledge is not
rival, though can be excludable.

Empirically, human capital growth cannot explain cross-country growth differences. There is
only some limited support that human capital matters as an input to R&D. The latter comes
out an important factor in driving aggregate productivity and explaining the cross-country
variation in the growth and levels of GDP per capita.
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10 Horizontal Innovations and Model of
Expanding Varieties (Romer, 1990)

10.1 Introduction

The next two chapters are devoted to models of endogenous technological change. We have
seen in both Solow and Ramsey model that technical progress, left unexplained for now, is the
main driver of economic growth once an economy as reached the steady state. Furthermore, as
we have seen in the last previous chapters, the AK structure is particularly useful to provide
sustained growth. We need therefore to understand how economic decisions lead to sustained
growth and thus to open the “black box”. Two types of technological change is considered:
horizontal and vertical innovations, which can be summarized as follows:

• horizontal innovations explain technological changes as appearing from the creation of
new products

• vertical innovations look at technological changes as the result of improving quality of
existing good (or decreasing cost of production).

While certainly not orthogonal, we discuss vertical innovations in the next chapter. The
present chapter is devoted to horizontal innovations as introduced by Romer (1990).

The main ideas behind Romer (1990) model are:

1. technology is an important factor in production

2. technological progress is market outcome, i.e., it is endogenously generated

3. technology is a good with special features:

• technology is not rival, i.e., if it is created it can be used at zero cost any time after
by everyone

• technology is at least partly excludable, i.e., one can restrict the access of others to
its technology, to some extent (thus s/he can earn returns)
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10.2 The Model

This is a multi-sector model of R&D-based endogenous growth

The sectors are:

1. R&D sector that produces “blueprints” of new varieties/types of capital goods ̇𝐴. The
R&D production uses 𝐿𝐴 amount of total labour 𝐿. The existing set of varieties 𝐴 in-
creases the productivity of the R&D sector, i.e., positive knowledge externalities operate
in the production of new blueprints, creating increasing returns in this sector

̇𝐴 = 𝐵𝐴𝐿𝐴, 𝐵 > 0,

where 𝐵 is the efficiency of “blueprint” creation. - An example could be the creation of
wireless telephone while using the knowledge of transmitting information via radio waves and
voice encoding.

2. Capital variety producing sector that uses the blueprints and produces intermediate capi-
tal goods for the final goods production. It is characterized by monopolistic competition.
There is free-entry in the market of new blueprints. Entrepreneurs compete for patent
that provides them with infinite-horizon property rights on a new blueprint. The acqui-
sition of a patent allows an entrepreneur to employ exclusively the new blueprint and
produce a distinct capital good thereafter. The production of capital goods/varieties
requires investment in terms of the (foregone) final good. Romer motivates the price-
setting assumption by entry (fixed) costs. Each and every capital good producing firm
first buys (invests) the blueprint of capital good. It then enters to capital goods market
and stays there forever. In capital goods market the firm has to have strictly positive
profit streams in order to recover the entry cost. To have positive profits, it has to be a
price setter. Moreover, in free entry equilibrium the investment cost equals to the value
derived in the market, i.e., the present value of discounted profit streams.

3. Final good production sector where producers employ 𝐿𝑌 amount of total labor 𝐿 and
varieties ( defined as a set) of capital goods 𝑥(𝑖), 𝑖 ∈ [0, 𝐴] in the production, that is:

𝑌 = 𝐿1−𝛼
𝑌 ∫

𝐴

0
𝑥(𝑖)𝛼𝑑𝑖

These firms are fully competitive in input and output markets.

The final good is the numeraire and may be either consumed or invested.

4. On the consumption-side, the representative household chooses its consumption and next
period assets to maximize its lifetime utility 𝑈 = ∫∞

0 𝑢(𝐶)𝑒−𝜌𝑡𝑑𝑡, subject to the standard
budget constraint.
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We also assume that all capital varieties depreciate fully within one period and there is no
growth in population, i.e., 𝐿 is constant.

The following sections develop and solve the model.

Note

This is the benchmark model. Two others versions show the robustness of the benchmark
Romer (1990) model: the “lab-equipment” model where the final output is used to create
new varieties and the “labor-for-intermediates” where labor is not embodied in the final
good but is the unique input to produce the intermediate good. For sake of brevity, we
redirect the reader toward Gancia and Zilibotti (2005).

10.3 Behaviors and Market equilibrium

10.3.1 Final goods production

The final good producers maximize their profits taking the price of their inputs, labour (𝑤)
and capital goods/varieties (𝑝𝑥(𝑖), ∀𝑖) as given. The problem of the representative final good
producer is

max
{𝑥(𝑖)}𝑖∈[0,𝐴],𝐿𝑌

𝐿1−𝛼
𝑌 ∫

𝐴

0
𝑥(𝑖)𝛼𝑑𝑖 − ∫

𝐴

0
𝑝𝑥(𝑖)𝑥(𝑖)𝑑𝑖 − 𝑤𝐿𝑌

The FOC are

𝐹𝐿 = 𝜕𝑌
𝜕𝐿𝑌

= (1 − 𝛼) 𝑌
𝐿𝑌

= 𝑤,

𝐹𝑥(𝑖) = 𝜕𝑌
𝜕𝑥(𝑖) = 𝛼𝐿1−𝛼

𝑌 𝑥(𝑖)𝛼−1 = 𝑝𝑥(𝑖); ∀𝑖,
(10.1)

where the first expression describes the demand for labour and the second describes the demand
for a capital good.

10.3.2 Individual variety

Each capital variety producer 𝑖, within every period maximizes her profits 𝜋𝑥(𝑖), by selecting
the price 𝑝𝑥(𝑖) and the quantity of production 𝑥(𝑖). For every unit of capital that it produces
it needs to invest one unit of final good that it “borrows” from households at the current
price of final output (which is set to one, i.e., the final good is the numeraire), i.e., 𝜋𝑥(𝑖) =
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𝑝𝑥(𝑖)𝑥(𝑖) − 𝑥(𝑖). The firm takes as given the price of the output it uses in the production and
the demand that it’s good is facing from the final good producers. Since the firm does not
have dynamic constraints it’s problem is1

max
𝑝𝑥(𝑖),𝑥(𝑖)

{𝜋𝑥(𝑖) = 𝑝𝑥(𝑖)𝑥(𝑖) − 𝑥(𝑖)}

s.t.
𝑝𝑥(𝑖) = 𝛼𝐿1−𝛼

𝑌 𝑥(𝑖)𝛼−1

The optimal rule(s) are derived by plugging the inverse demand function of capital good to the
profit function and taking the derivative with respect 𝑥(𝑖), i.e., solve the following problem

max
𝑥(𝑖)

{𝛼𝐿1−𝛼
𝑌 𝑥(𝑖)𝛼 − 𝑥(𝑖)}

⇒ 1 = 𝛼2𝐿1−𝛼
𝑌 𝑥(𝑖)𝛼−1 ⇒ 𝑥(𝑖) = 𝛼 2

1−𝛼 𝐿𝑌

(10.2)

From (10.1) and (10.2), we derive:

𝑝𝑥(𝑖) = 𝛼𝐿1−𝛼
𝑌 𝑥𝛼−1 = 1

𝛼 ⇒

𝜋𝑥(𝑖) = [𝑝𝑥 − 1] 𝑥 = 1 − 𝛼
𝛼 𝛼 2

1−𝛼 𝐿𝑌 > 0
(10.3)

Given the symmetry across the different varieties in the final good production (as (10.2) does
not depend on index 𝑖), the equilibrium implies that all capital good varieties producers will
make the same optimal price and quantities choices, i.e., 𝑝𝑥(𝑖) = 𝑝𝑥 and 𝑥(𝑖) = 𝑥∀𝑖.
Note that the imperfect competition in the market equilibrium implies that the price of capital
good is a constant mark-up (1−𝛼

𝛼 ) above its marginal cost, and the quantity of supplied
capital good will be lower than the one selected in a perfectly competitive market (first-
best outcome). Note also that in equilibrium the final output is linear in technology since
𝑌 = 𝑌 = 𝐿1−𝛼

𝑌 ∫𝐴
0 𝑥𝛼𝑑𝑖 for all 𝑖 which implies 𝑌 = 𝐿1−𝛼

𝑌 𝐴𝑥𝛼 = 𝛼 2𝛼
1−𝛼 𝐿𝑌 𝐴, and the economy

can experience long-run growth driven by technology progress, that here takes the form of
expanding variety of capital goods.

1It is worth to note that the objective function is (10.4) and in order to solve the optimal problem we could use
Hamiltonian. However, since there are no dynamic constraints such solution is tantamount to the proposed
one.

105



10.3.3 Firm entry into capital goods market

The potential capital good producer in order to establish its firm competes with other potential
producers in bidding for a new blueprint, where the blueprint is produced in fully competi-
tive market. It makes an up-front (prior to entry) payment for the blueprint. In free entry
equilibrium

this payment (cost of entry) is equal to the value derived by the firm in the capital market,

𝑉𝑥(𝑡) = ∫
∞

𝑡
𝜋𝑥(𝜏)𝑒− ∫𝜏

𝑡 𝑟(𝑠)𝑑𝑠𝑑𝜏 (10.4)

where 𝑡 is the entry date and 𝑟(𝑠) is the instantaneous real interest rate that the representative
household earns on its asset holdings.

From (10.4), it follows that

̇𝑉𝑥(𝑡) = −𝜋𝑥(𝑡)𝑒− ∫𝑡
𝑡 𝑟(𝑠)𝑑𝑠 + ∫

∞

𝑡
𝜋𝑥(𝜏) 𝜕

𝜕𝑡𝑒− ∫𝜏
𝑡 𝑟(𝑠)𝑑𝑠𝑑𝜏

= −𝜋𝑥(𝑡) + ∫
∞

𝑡
𝜋𝑥(𝜏) { 𝜕

𝜕𝑡 [− ∫
𝜏

𝑡
𝑟(𝑠)𝑑𝑠] 𝜕

𝜕 [− ∫𝜏
𝑡 𝑟(𝑠)𝑑𝑠]

𝑒− ∫𝜏
𝑡 𝑟(𝑠)𝑑𝑠} 𝑑𝜏

= −𝜋𝑥(𝑡) + 𝑟(𝑡)𝑉𝑥(𝑡)

which is standard Hamilton-Jacobi-Bellman equation. It can be rewritten as

𝑟𝑉𝑥 = 𝜋𝑥 + ̇𝑉𝑥

If 𝑉𝑥(𝑡) is constant in equilibrium over time, then

𝑉𝑥(𝑡) = 𝜋𝑥(𝑡)
𝑟(𝑡)

This condition implies that at every point in time, the instantaneous excess of revenue over
marginal cost must be just sufficient to cover the interest rate cost on the initial investment on a
new blueprint. Another way of thinking this is that a household lends 𝑉𝑥 to the entrepreneur for
him to “buy” a blueprint and establish a firm and then receives in every period the “dividends”
that equal to the per period profits.

Under the free-entry the value generated by the entry of a firm 𝑉𝑥(𝑡) ̇𝐴 is equal to the cost of
generating the blueprint 𝑤𝐿𝐴,

𝑉𝑥(𝑡) ̇𝐴 = 𝑤𝐿𝐴 (10.5)
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10.3.4 The 𝑅&𝐷 sector

Any blueprint is owned by a capital good producer which has a value 𝑉𝑥(𝑡). Thus, the
price/value of a “blueprint” is 𝑉𝑥(𝑡) and the problem of a “blueprint” producer is

max
𝐿𝐴

𝑉𝑥(𝑡) 𝐵𝐴𝐿𝐴⏟
= ̇𝐴(𝑡)

−𝑤𝐿𝐴

Assuming fully competitive market with free-entry and zero-profit conditions, we get from (
10.5):

𝑤(𝑡) = 𝑉𝑥(𝑡)𝐵𝐴(𝑡)

10.3.5 Labour market

The labour market equilibrium needs to guarantee that labor is freely mobile between the final
good and R&D sectors, i.e. the value of the marginal product of labour is equated in these two
sectors. Therefore, the wage rate needs to be equal in both sectors:

𝑤(𝑡) = 𝑉𝑥(𝑡)𝐵𝐴(𝑡) = (1 − 𝛼)𝑌 (𝑡)
𝐿𝑌

= 𝛼 2𝛼
1−𝛼 (1 − 𝛼)𝐴(𝑡) (10.6)

Thus,

𝑉𝑥(𝑡) = 𝛼 2𝛼
1−𝛼 (1 − 𝛼)

𝐵 ≡ 𝑉𝑥

Therefore, indeed 𝑉𝑥 = 𝜋𝑥
𝑟 .

From (10.3) and (10.7) it also follows that:

𝑤 = 𝑉𝑥(𝑡)𝐵𝐴(𝑡) = 𝜋𝑥
𝑟 𝐵𝐴(𝑡)

= 1 − 𝛼
𝛼 𝛼 2

1−𝛼 𝐿𝑌
1
𝑟 𝐵𝐴(𝑡)𝑌 (𝑡)

𝑌 (𝑡)
= 𝛼(1 − 𝛼)1

𝑟 𝐵𝑌 (𝑡).

Plugging back this expression into (10.7), we get:

𝐿𝑌 = 𝑟
𝛼𝐵, 𝐿𝐴 = 𝐿 − 𝐿𝑌 (10.7)
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10.4 The household side

From the standard household intertemporal maximization problem, it follows that its con-
sumption over time follows the path

̇𝐶(𝑡)
𝐶(𝑡) = 1

𝜃(𝑟(𝑡) − 𝜌) (10.8)

The standard transversality condition ensures that the value of the asset holdings of the
households is equal to zero in the limit, i.e., the growth of the assets does not exceed the real
interest rate.

10.5 Balanced growth path

All variables of the model need to grow at constant rates (BGP).

• For 𝑔𝐴 ≡ ̇𝐴(𝑡)
𝐴(𝑡) = 𝐵𝐿𝐴, to be constant in equilibrium, it must be that the allocation of

labour in the research and final good sector are constant over time, i.e., 𝐿̇𝑌 = 0. From
(10.8), it follows that the interest rate should be constant on BGP and 𝑔𝐶 ≡ ̇𝐶(𝑡)

𝐶(𝑡) =
1
𝜃 (𝑟 − 𝜌). Therefore, from (10.7) it follows that 𝐿̇𝑌 = 0.

• From the FOCs of the intermediate capital good producers, it follows that 𝑥 is time
invariant, implying that aggregate capital stock available in the economy at every point
in time 𝐾 = 𝐴(𝑡)𝑥 grows at rate 𝑔𝐾 = 𝑔𝐴. The economy grows due to capital-deepening
which is entirely driven by the expansion of capital varieties.

• The production function of final goods 𝑌 (𝑡) = 𝛼 2𝛼
1−𝛼 𝐿𝑌 𝐴(𝑡) implies that along the BGP

𝑔𝑌 = 𝑔𝐴.

• Households’ total assets are 𝑏(𝑡) = 𝑉 (𝑡)𝐴(𝑡) ≡ 𝑉𝑥𝐴(𝑡) ⇒ ̇𝑏(𝑡) = 𝑉𝑥 ̇𝐴(𝑡). From house-
holds’ budget constraint, the law of motion of assets is defined by

̇𝑏(𝑡) = 𝑟(𝑡)𝑏(𝑡) + 𝑤(𝑡)𝐿 − 𝐶(𝑡)

Noting that 𝑟𝑏(𝑡) = 𝑟𝑉𝑥𝐴(𝑡) = 𝜋𝑥𝐴(𝑡) = (1−𝛼)𝑌 (𝑡)
𝛼 and 𝑤(𝑡)𝐿 = (1−𝛼)𝑌

𝐿𝑌
, we have:
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̇𝑏(𝑡) ≡ 𝑉𝑥 ̇𝐴(𝑡) =𝑟𝑉𝑥𝐴(𝑡) + (1 − 𝛼)𝑌
𝐿𝑌

𝐿 − 𝐶(𝑡)

=(1 − 𝛼)𝑌 (𝑡)
𝛼 + (1 − 𝛼)𝑌

𝐿𝑌
𝐿 − 𝐶

= ( 1
𝛼 + 𝐿

𝐿𝑌
) (1 − 𝛼)𝑌 (𝑡) − 𝐶(𝑡)

⇒ 𝑔𝐴 = ( 1
𝛼 + 𝐿

𝐿𝑌
) (1 − 𝛼) 𝑌 (𝑡)

𝑉𝑥𝐴(𝑡) − 𝐶(𝑡)
𝑉𝑥𝐴(𝑡)

Thus, 𝑔𝐶 = 𝑔𝐴 = 𝑔𝑌 = 𝑔𝐾 ≡ 𝑔.

Note that in equilibrium, there is a positive relation between growth and the real interest rate,
as implied by the Euler equation (10.8), but a negative one implied by the / production-side,
as

𝑔𝐴 = 𝐵 (𝐿 − 𝐿𝑌 ) = 𝐵 (𝐿 − 𝑟
𝛼𝐵) (10.9)

The latter is due to the fact that higher interest rate reduces the present discounted value of any
capital variety firm. By doing so, it reduces the market incentives to direct (labour) resources
away from the final good production into the production of new assets/savings instruments.
Along the unique BGP, these two forces are equated implying a unique real interest rate and
labour allocation. These two can be derived by equating the (10.8) and (10.9)

1
𝜃 (𝑟 − 𝜌) = 𝐵 (𝐿 − 𝑟

𝛼𝐵) ⇒

𝑟 = 𝛼
𝛼 + 𝜃(𝜃𝐵𝐿 + 𝜌)

⇒ 𝐿𝑌 = 𝜃𝐵𝐿 + 𝜌
(𝛼 + 𝜃)𝐵

and therefore

𝑔 = 𝑟 − 𝜌
𝜃 = 𝛼𝐵𝐿 − 𝜌

𝛼 + 𝜃

The condition for positive long-run growth sets a minimum bound on the scale of the economy:
𝐿 > 𝜌

𝐵𝜃 . Note that the transversality condition is always satisfied under this condition, i.e.,
𝑟 > 𝑔𝐴.
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10.6 Comparative statics

• Increase in 𝐵 and 𝐿 increase 𝑔, by reducing 𝐿𝑌
• Increase in 𝜃 or 𝜌 decreases 𝑔, by increasing 𝐿𝑌
• Increase in 𝛼 also increases 𝑔, by reducing 𝐿𝑌

10.7 Kaldor stylized facts and the first models of endogenous
growth

• 𝑌 /𝐿 = 𝐴𝑥𝛼 increases at a rate 𝑔
• 𝐾/𝐿 = 𝐴 𝑥

𝐿 also increases at a rate 𝑔
• 𝑌 /𝐾 is constant
• The real interest rate 𝑟 is constant
• The wage rate 𝑤 = (1 − 𝛼) 𝑌

𝐿𝑌
= (1 − 𝛼) ( 𝑥

𝐿𝑌
)𝛼 𝐴 increases at rate 𝑔

• Growth rates across countries differ in the long-run due to technology and preference
parameters. Long-run growth takes place due to the endogenous expansion of the capital-
varieties. Short-episodes of fast growth are due to changes in the underlying parameters
and/or the scale of the economy.

The model predicts that there is no convergence in terms of GDP per capita.

10.8 Social Planner’s problem

In the decentralized market equilibrium there are two sources of inefficiency that drive the
equilibrium growth outcome away from the first-best:

1. Monopoly rights/patents

2. Positive knowledge externalities in the production of new blueprints of capital goods

The social planner faces the following optimal control problem, where the state of the economy
is summarized by 𝐴
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max
𝑥(𝑖),𝐿𝑌 ,𝐶

∫
∞

0

𝐶1−𝜃 − 1
1 − 𝜃 𝑒−𝜌𝑡𝑑𝑡

s.t.

𝐿1−𝛼
𝑌 ∫

𝐴

0
𝑥(𝑖)𝛼𝑑𝑖 = 𝐶 + ∫

𝐴

0
𝑥(𝑖)𝑑𝑖

̇𝐴 = 𝐵 (𝐿 − 𝐿𝑌 ) 𝐴
𝐴(0) > 0 given.

where the second equation is the resource constraint. The third term in resource constraint
is the available capital stock. In this model the capital depreciates in a period; thus, the
investment equals to the capital stock.

Let 𝜆𝐾 and 𝜆𝐴 denote the shadow prices of “capital” and “knowledge” respectively. The
optimal rules imply the following conditions that govern equilibrium in every point in time

𝐶−𝜃 = 𝜆𝐾

𝑥(𝑖) = 𝛼 1
1−𝛼 𝐿𝑌 , ∀𝑖

𝜆𝐾(1 − 𝛼) ( 𝑥
𝐿𝑌

)
𝛼

= 𝐵𝜆𝐴

𝜆̇𝐴 = 𝜌𝜆𝐴 − 𝜆𝐾 [𝐿1−𝛼
𝑌 𝑥𝛼 − 𝑥] − 𝜆𝐴𝐵 (𝐿 − 𝐿𝑌 )

The first equation shows that the social planner would choose to produce to the point that
the marginal product of each capital variety equates its marginal cost (one unit of output),
hence 𝑥𝑆𝑃 > 𝑥. The second equates the value of the marginal product of labour in the final
good and R&D production. It implies that over time, the rates of returns are equated, i.e.,
− 𝜆̇𝐾

𝜆𝐾
= − 𝜆̇𝐴

𝜆𝐴
. From the optimal rule for consumption then follows that

̇𝐶
𝐶 = −1

𝜃
𝜆̇𝐾
𝜆𝐾

= −1
𝜃

𝜆̇𝐴
𝜆𝐴

where 𝜆̇𝐴
𝜆𝐴

can be derived from the system above:
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𝜆̇𝐴
𝜆𝐴

= 𝜌 − 𝜆𝐾
𝜆𝐴

[𝐿1−𝛼
𝑌 (𝛼 1

1−𝛼 𝐿𝑌 )𝛼 − 𝛼 1
1−𝛼 𝐿𝑌 ] − 𝐵 (𝐿 − 𝐿𝑌 )

= 𝜌 − 𝜆𝐾
𝜆𝐴

[𝐿𝑌 𝛼 𝛼
1−𝛼 − 𝛼 1

1−𝛼 𝐿𝑌 ] − 𝐵 (𝐿 − 𝐿𝑌 )

= 𝜌 − 𝐵 [(1 − 𝛼) ( 𝑥
𝐿𝑌

)
𝛼

]
−1

𝐿𝑌 𝛼 𝛼
1−𝛼 (1 − 𝛼) − 𝐵 (𝐿 − 𝐿𝑌 )

= 𝜌 − 𝐵 [( 𝑥
𝐿𝑌

)
𝛼

]
−1

𝐿𝑌 𝛼 𝛼
1−𝛼 − 𝐵 (𝐿 − 𝐿𝑌 )

= 𝜌 − 𝐵𝛼− 𝛼
1−𝛼 𝐿𝑌 𝛼 𝛼

1−𝛼 − 𝐵 (𝐿 − 𝐿𝑌 )
= 𝜌 − 𝐵𝐿.

10.8.1 Balanced growth path

From the blueprint production follows that 𝐿𝑌 is constant on BGP. Given this, the 𝑥 is
also constant. Therefore, from resource constraint follows that the macroeconomic aggregates
grow at the same constant rate on balanced growth path. Denote that constant growth rate
by 𝑔𝑆𝑃 .

The socially optimal long-run growth is given by

𝑔𝑆𝑃 = 𝐵𝐿 − 𝜌
𝜃 .

Since 𝛼 ∈ (0, 1) the 𝑔𝑆𝑃 > 𝑔,i.e.,

𝐵𝐿 − 𝜌
𝜃 > 𝛼𝐵𝐿 − 𝜌

𝛼 + 𝜃

Moreover, since 𝑔𝑆𝑃 > 𝑔 from the “blueprint” production follows that 𝐿𝑆𝑃
𝑌 < 𝐿𝑌 , i.e., the social

planner would allocate more of the labour resources into the production of R&D, since the
latter is the engine of growth. Therefore, the growth promoting policies increase the incentives
to innovate by subsidies to the production of 𝑅&𝐷 (e.g., subsidies to the employment of labour
in R&D) that will make the firms internalize the knowledge externalities they generate by each
new variety that they discover. The distortion of the imperfect competition may be alleviated
by a subsidy to the purchases of the capital goods and/ or subsidies to the production of final
output that would increase the demand of capital goods. These policies would finance those
subsidies by lump-sum taxes on household.
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11 Vertical innovations and Model of Quality
Ladders (Grossman-Helpman ,1991; Aghion
and Howitt 1992)

11.1 Introduction

In this chapter, we present another version of technological change modelling, i.e. vertical
innovations. Instead of seeing new varieties as the result of innovations (e.g. development of
DVD products), vertical innovations explains the increase in quality of existing goods (e.g. from
DVD to Blu-Ray). This has led to the so-called Schumpeterian Growth literature as the
augmented-quality goods replace existing goods.

11.2 The Model

• A multi-sector model of R&D-based endogenous growth that is driven by “creative de-
struction.”

• There are two factors of production: a fixed amount of labour and fixed number, 𝑁 , of
capital good types. Within each variety 𝑗, capital goods differ in their quality.

• Qualities are of distance 𝑞 > 1 of each other. The best quality within every sector 𝑗 is
𝑞𝜅𝑗 , where 𝜅𝑗 ∈ ℕ ∪ {0}. The initial quality is normalized to one (𝜅𝑗∣𝜅=0 = 1).

• The R&D sector produces “blueprints” for improved quality capital goods of each known
variety. The input to the R&D production is investment in units of the final output.
For the variety 𝑗 of quality 𝜅𝑗, the R&D expenditures are 𝑍𝑗𝜅𝑗

. The output of the R&D
production is uncertain. The R&D expenditures result in the new variety (𝜅𝑗 + 1) with
probability 𝑝𝑗𝜅𝑗

. The technology of R&D production is linear in R&D investment,

𝑝𝑗𝜅𝑗
= 𝜙 (𝜅𝑗) 𝑍𝑗𝜅𝑗

(11.1)

As quality improves, new discoveries become more expensive in terms of the required invest-
ment of resources, i.e., 𝜙′ (𝜅𝑗) < 0 gives diminishing returns to R&D input. As the probability
depends only on the current quality level, it suggests that innovation occurs like a Poisson
process.
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Note

Linearity implies absence of congestion. Innovation in each sector is “jumpy” (takes
place in a discreet manner), however the existence of many sectors and the Law of Large
Numbers ensures a smooth outcome at the aggregate level.

• The discovery of a better quality capital good of a particular variety provides an en-
trepreneur with monopoly rights over the use of the “blueprint.” He produces the distinct
capital variety with a linear technology that transforms one unit of final output into one
unit of capital good.

• There is free entry into the capital goods industry.
• The final good sector operates under perfect competition. It combines labour, 𝐿, with

qualityadjusted input 𝑋̃𝑗 of every variety 𝑗 of the existent (fixed) set of capital varieties,
𝑗 ∈ {1, … , 𝑁}, i.e.,

𝑌 = 𝐴𝐿1−𝛼
𝑁

∑
𝑗=1

𝑋̃𝛼
𝑗

There is additive separability in all varieties of capital and all of them are used in the final good
production due to standard neoclassical function assumptions (Inada conditions). - Different
qualities of capital goods of a variety 𝑗 are perfect substitutes of each other. Hence, if 𝜅𝑗 is
the best quality known, the total input employed in the final good sector of the 𝑗 th capital
good variety is:

𝑋̃𝑗 =
𝜅𝑗

∑
𝑘=0

𝑞𝑘𝑥𝑗𝑘

- It is assumed here that only the highest quality capital good survives of each variety of capital
goods, hence

𝑋̃𝑗 = 𝑞𝜅𝑗𝑥𝑗𝜅𝑗

This “guess” regarding the properties of the equilibrium path is to be verified below, by
examining the conditions that support it.

Note: The survival of the best quality only across sectors means that the model features
technological obsolescence. This results in that the decision to conduct research in order to
invent a better quality capital good is based on two forces. First, the discovery is to be
overtaken by another researcher in the future (this decreases incentives for research). Second,
the discovery of an improved quality capital good implies that there will be a transfer of the
monopoly rent from the previous best-quality discovery owner (this increases the incentives for
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research). - From the consumption-side, the representative HH chooses its consumption and
assets to maximize its intertemporal utility: ∫∞

0 𝑢(𝐶)𝑒−𝜌𝑡𝑑𝑡 subject to the standard budget
constraint.

• All capital goods depreciate fully within one period.
• No population growth.

11.3 Market equilibrium

11.3.1 Final goods production

The final good producers maximize their profits taking the price of their inputs, labour (𝑤)
and capital goods (𝑃𝑗𝜅𝑗, ∀𝑗) as given. Standard conditions imply that:

𝐹𝐿 = 𝜕𝑌
𝜕𝐿 = (1 − 𝛼)𝑌

𝐿 = 𝑤

𝐹𝑋𝑗𝜅𝑗
= 𝜕𝑌

𝜕𝑥𝑗𝜅𝑗

= 𝐴𝛼𝐿1−𝛼𝑥𝛼−1
𝑗𝜅𝑗

𝑞𝛼𝜅𝑗 = 𝑃𝑗𝜅𝑗; ∀𝑗

11.3.2 Capital goods production

Each capital good producer, within every period maximizes its profits, 𝜋𝑗𝜅𝑗
, by selecting its

price, 𝑃𝑗𝜅𝑗, and quantity of production, 𝑥𝑗𝜅𝑗
. For every unit of capital that it produces, it

needs to invest one unit of final good that it “borrows” from HH at the current output price,
i.e.,

𝜋𝑗𝜅𝑗
= 𝑃𝑗𝜅𝑗𝑥𝑗𝜅𝑗

− 𝑥𝑗𝜅𝑗

The monopolist takes as given the price of the output it uses in its production and the demand
that its good is facing from the final good producers, i.e., its problem is

max
𝑃𝑗𝜅𝑗,𝑋𝑗𝜅𝑗

𝜋𝑗𝜅𝑗

s.t.
𝑃𝑗𝜅𝑗 = 𝐴𝛼𝐿1−𝛼𝑥𝛼−1

𝑗𝜅𝑗
𝑞𝛼𝜅𝑗

The FOCs of this optimal program imply
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𝑥𝑗𝜅𝑗
= 𝐿𝐴 1

1−𝛼 𝑄 2
1−𝛼 𝑞 𝛼

1−𝛼 𝜅𝑗

𝑃𝑗𝜅𝑗
= 1

𝛼

:::{.callout-note} It was assumed that only the best available quality is available within each
type of capital good. Suppose instead that this was not the case and the second-best quality
is also available. The marginal product of any two consecutive qualities differs by their quality
difference, i.e., by a factor of 𝑞, which means that the price differential supported by the
market equilibrium between the first and second highest quality is:

𝑃𝑗𝜅𝑗
𝑃𝑗𝜅𝑗−1

= 𝑞. Therefore,
the monopoly producer of the second highest quality can at most charge 𝑃𝑗𝜅𝑗−1 = 1

𝛼𝑞 . If
𝛼𝑞 > 1, then the second best quality producer cannot cover with such price its marginal cost
of production and is driven out of the market. Alternatively, if 𝛼𝑞 < 1, the result that only
the leading technology survives within each variety can still be an equilibrium outcome, where
the leader follows limit pricing. In such case it charges 𝑃𝑗𝜅𝑗 = 𝑞 − 𝜀 (𝜀 → +0) and the next
quality producer then could charge 1 − 𝜀

𝑞 < 1. :::

With the leading technology only, then the final output production in equilibrium is described
by

𝑌 = 𝐴𝐿1−𝛼
𝑁

∑
𝑗=1

𝑞𝛼𝜅𝑗𝑥𝛼
𝑗𝜅𝑗

= 𝐿𝐴 1
1−𝛼 𝛼 2𝛼

1−𝛼

𝑁
∑
𝑗=1

𝑞 𝛼
1−𝛼 𝜅𝑗

11.3.3 the 𝑅&𝐷 Sector

Given the equilibrium outcome of the capital goods, labour and final output market, the next
step is to examine the decision of the entrepreneurs to conduct R&D for the discovery of
the 𝜅𝑗+1 quality of every type of capital good. Access to the market is free, therefore, every
entrepreneur should be in the limit equating his cost in investing in R&D with his expected
profit.

The cost of R&D is the investment in terms of current output, 𝑍𝑗𝜅𝑗
. The probability of a

successful innovation of the quality 𝜅𝑗 + 1 is 𝑝𝑗𝜅𝑗
while the expected value from it is 𝑉𝑗𝜅𝑗+1.

More rigorously, 𝑉𝑗𝜅𝑗+1 is the expected present value of the profit flows of the producer of
𝜅𝑗 + 1, which within every period is 𝜋𝑗𝜅𝑗+1 = 1−𝛼

𝛼 𝑥𝑗𝜅𝑗+1, until its position is overtaken by
the discovery of the next quality of the same type of capital good. The latter depends on
the probability of the discovery of the next higher quality, 𝑝𝑗𝜅𝑗+1. Therefore, the successful
innovator of the 𝜅𝑗 + 1 quality has 𝑉𝑗𝜅𝑗+1 that satisfies in equilibrium:
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𝑟𝑉𝑗𝜅𝑗+1 = 𝜋𝑗𝜅𝑗+1 − 𝑝𝑗𝜅𝑗+1𝑉𝑗𝜅𝑗+1

⟹ 𝑉𝑗𝜅𝑗+1 =
𝜋𝑗𝜅𝑗+1

𝑟 + 𝑝𝑗𝜅𝑗+1

(11.2)

The last condition is essentially an arbitrage condition. The entrepreneur should be indifferent
between lending 𝑉𝑗𝜅𝑗+1 units of output and earning the market interest rate, i.e. 𝑟𝑉𝑗𝜅𝑗+1 and
holding the firm that provides him with a profit flow, 𝜋𝑗𝜅𝑗+1, and there is a probability that
at the end of the period he loses the value of its firm because it is overtaken by a new higher
quality product (i.e., its capital loss will be −𝑉𝑗𝜅𝑗+1 ).

Therefore, given that there is free entry into capital goods sector in equilibrium

𝑝𝑗𝜅𝑗
𝑉𝑗𝜅𝑗+1 = 𝑍𝑗𝜅𝑗

From this condition and the 𝑅&𝐷 production function (11.1) together with (11.2) it follows
that

𝑝𝑗𝜅𝑗+1 = 𝜙 (𝜅𝑗) 𝜋𝑗𝜅𝑗+1 − 𝑟

Therefore, the equilibrium probability of a new innovation is influenced by two forces

1. A higher quality of a type of capital variety implies higher demand for this type of capital
and thereby higher profits for the successful innovator.

2. The marginal cost of discovering a higher quality capital variety increases.

When the positive effect dominates, newer sectors grow faster than older ones, i.e. there are
increasing returns to scale. When the negative effect dominates there is convergence to à la
Ramsey. When the two effects balance each other out (i.e. when there are CRS), there is
balanced growth in all sectors.

11.4 Balanced growth path

All variables of the model need to grow at constant rates (BGP). A specification for 𝜙 (𝜅𝑗)
that ensures balanced growth is the following

𝜙 (𝜅𝑗) = 1
𝜁 𝑞−(𝜅𝑗+1) 𝛼

1−𝛼

This implies that the free-entry condition boils down to
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1
𝜁

1 − 𝛼
𝛼 𝐿𝐴 1

1−𝛼 𝛼 2
1−𝛼 = 𝑟 + 𝑝𝑗𝜅𝑗+1 = 𝑟 + 𝑝

Note that this specification was chosen in order to eliminate the asymmetry across the different
sectors of the economy, given that it is sufficient for a constant probability of new innovations
taking place across all sectors. The equilibrium R&D investment is

𝑍𝑗𝜅𝑗
= 𝑝

1
𝜁 𝑞−(𝜅𝑗+1) 𝛼

1−𝛼
= 𝑞(𝜅𝑗+1) 𝛼

1−𝛼 (1 − 𝛼
𝛼 𝐿𝐴 1

1−𝛼 𝛼 2
1−𝛼 − 𝑟𝜁)

Note that there are scale effects in this model, as larger sectors spend more on R&D.

Define the aggregate quality index as

𝑄 ≡
𝑁

∑
𝑗=1

𝑞𝜅𝑗
𝛼

1−𝛼

Then, the aggregate output and quantity of capital goods are given by

𝑌 = 𝐿𝐴 1
1−𝛼 𝛼 2𝛼

1−𝛼 𝑄

𝑋 =
𝑁

∑
𝑗=1

𝑋𝑗𝜅𝑗
= 𝐿𝐴 1

1−𝛼 𝛼 2
1−𝛼 𝑄

Aggregate R&D expenditures are

𝑍 =
𝑁

∑
𝑗=1

𝑍𝑗𝜅𝑗
= (1 − 𝛼

𝛼 𝐿𝐴 1
1−𝛼 𝛼 2

1−𝛼 − 𝑟𝜁) 𝑞 𝛼
1−𝛼 𝑄

Aggregate output, capital and R&D expenditures are proportional to the quality index 𝑄,
which is itself function of time. Therefore, in steady-state

𝑔𝑌 = 𝑔𝑍 = 𝑔𝑋 = 𝑔𝑄 ≡ 𝑔

The resource constraint of this economy is

𝑌 = 𝐶 + 𝑋 + 𝑍

implying that in the steady-state it is also true that
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𝑔𝐶 = 𝑔

On average in the economy in all different capital goods “industries”, at every point in time,
an innovation of a higher quality capital good takes place with probability 𝑝. Therefore, for a
large 𝑁 the Law of Large Numbers provides with the growth rate

𝑔∗ ≈ 𝐸 (Δ𝑄
𝑄 ) =

∑𝑁
𝑗=1 𝑝 (𝑞(𝜅𝑗+1) 𝛼

1−𝛼 − 𝑞𝜅𝑗
𝛼

1−𝛼 )
∑𝑁

𝑗=1 𝑞𝜅𝑗
𝛼

1−𝛼
= 𝑝 (𝑞 𝛼

1−𝛼 − 1)

This growth rate is implied from the production-side of the economy. It is negatively related to
𝑟 since 𝑝 = 1

𝜁
1−𝛼

𝛼 𝐿𝐴 1
1−𝛼 𝛼 2

1−𝛼 − 𝑟. On the other hand, the standard optimization condition for
the representative household gives a positive relation between the growth rate of the economy
and the real return on assets, 𝑔 = 1

𝜃 (𝑟−𝜌). Therefore, the equilibrium interest rate and growth
rate are

𝑟 = 𝜃𝑝 (𝑞 𝛼
1−𝛼 − 1) + 𝜌

=
𝜃 (𝑞 𝛼

1−𝛼 − 1) 1
𝜁

1−𝛼
𝛼 𝐿𝐴 1

1−𝛼 𝛼 2
1−𝛼 + 𝜌

1 + 𝜃 (𝑞 𝛼
1−𝛼 − 1)

𝑔 = 1
𝜃 (𝑟∗ − 𝜌)

TVC is satisfied for parameters that ensure 𝑟 > 𝑔.

11.5 Further comments

The decentralized equilibrium in this model does not achieve first best allocations due to the
following distortions

1. Monopoly pricing in the capital goods sector,

2. Obsolescence of the lower quality capital goods.

The first distortion implies that there is low investment and growth in the economy. The
second implies that when a new innovation is made, then the successful innovator takes over
the profits made by the previous leader in the particular type of capital variety. This “rat race”
effect boosts the incentive to conduct 𝑅&𝐷 for the purpose of product innovation. At the same
time though, for the same potential innovator there is positive probability that himself will be
overtaken by the next discovery, which reduces the incentives for R&D. Because of discounting,
as current profits matter more than future ones, the outcome is that in equilibrium there is
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more than optimal 𝑅&𝐷 investment, which would tend to increase growth. The net effect of
the two distortions is ambiguous.

The decentralized growth rate will be equal to the social planner’s one when relative prices
are corrected and the successful innovators compensate their immediate predecessors for the
loss of their monopoly rents. In the case that all innovations are conducted by the leaders in
each sector, i.e. when there is no need for compensation, equilibrium 𝑅&𝐷 would be too low.
If instead relative prices are corrected, but no compensation is offered, then 𝑅&𝐷 would be
too high.

Contrast with Romer (1990) The horizontal expansion in the capital good varieties model may
be better suited for large-scale inventions (e.g. the ones implying the establishment of a new
industry). The vertical expansion of every variety of capital goods is better suited to account
for the smaller and gradual improvements in the quality of the capital goods.

On the one hand, both of these endogenous growth models share key features and thereby
predictions. In both models, the production-side equilibrium implies that the interest rate has
a negative growth effect as it reduces the present discounted value of the expected profits from
innovations. Also, both models “suffer” from scale-effects. The engine of long-run growth
is the R&D production that is conducted given market-based incentives. Noteworthy, the
organizational capital/institutional level of the economy, as captured by the term 𝐴 in the
aggregate production function, has not only a level effect (as in Solow), but a permanent
growth effect.

On the other hand, there are important differences in their specifications. Romer’s model
lacks the feature of creative destruction as it assumes that the different varieties are not direct
substitutes or complements. As a result, in the decentralized equilibrium the R&D effort
cannot be too high.
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